
Tutorial 4 – The von Neumann Model, LC3

 1) Remember that PC is incremented as part
of the FETCH phase. This is done before the
EVALUATE ADDRESS stage. Why does this
matter?

 1) Remember that PC is incremented as part
of the FETCH phase. This is done before the
EVALUATE ADDRESS stage. Why does this
matter?

 Answer: To allow for „control instructions‟ to
alter the PC and change the sequence of
execution.

 4.4) What is the word length of a computer
defined as? How does this length affect its
computational power in relation to a
computer with a larger word size?

 4.4) What is the word length of a computer
defined as? How does this length affect what
a computer can compute in relation to a
computer with a larger word size?

 Answer: It is the size of the quantities
processed by the ALU: 16-bits for the LC-3.

 All computers have the same computational
ability, the differences are with respect to
time and memory requirements.

 4.6) What are the two components of an
instruction? What information do these two
components contain?

 4.6) What are the two components of an
instruction? What information do these two
components contain?

 Answer:
◦ Opcode – what the instruction does.

◦ Operand – what the instruction performs upon.

 4.8) Suppose a 32-bit instruction takes the
following format:

 If there are 225 opcodes and 120 registers,

 a. What is the minimum number of bits required
to represent the OPCODE?

 b. What is the minimum number of bits required
to represent the Destination Register (DR)?

 c. What is the maximum number of UNUSED bits
in the instruction encoding?

OPCODE DR SR1 SR2 UNUSED

 4.8) Suppose a 32-bit instruction takes the
following format:

 If there are 225 opcodes and 120 registers,

 a. What is the minimum number of bits required
to represent the OPCODE? A: 8 bits

 b. What is the minimum number of bits required
to represent the Destination Register (DR)? A: 7
bits

 c. What is the maximum number of UNUSED bits
in the instruction encoding? A: 3 bits

OPCODE DR SR1 SR2 UNUSED

 4.16)
◦ A. If a machine cycle is 2 nanoseconds (i.e., 2 x 10-9

seconds), how many machine cycles occur each
second?

◦ B. If the computer requires on the average eight
cycles to process each instruction, and the
computer processes instructions one at a time from
beginning to end, how many instructions can the
computer process in 1 second?

 4.16)
◦ A. If a machine cycle is 2 nanoseconds (i.e., 2 x 10-9

seconds), how many machine cycles occur each
second?

 Answer: 5 x 108 cycles/sec

◦ B. If the computer requires on the average eight
cycles to process each instruction, and the
computer processes instructions one at a time from
beginning to end, how many instructions can the
computer process in 1 second?

 Answer: (5 x 108)/8 = 0.625 x 108

 5.4) Say we have a memory consisting of 256
locations, and each location contains 16 bits.
◦ A) How many bits are required for the address?
◦ B) If we use the PC-relative addressing mode, and

want to allow control transfer between instructions
20 locations away, how many bits of a branch
instruction are needed to specify the PC-relative
offset?

◦ C) If a control instruction is in location 3, what is
the PC-relative offset of address 10. Assume that
the control transfer instructions work the same way
as in the LC-3.

 5.4) Say we have a memory consisting of 256
locations, and each location contains 16 bits.
◦ A) How many bits are required for the address?
 Answer: 8 bits.

◦ B) If we use the PC-relative addressing mode, and
want to allow control transfer between instructions
20 locations away, how many bits of a branch
instruction are needed to specify the PC-relative
offset?
 Answer: ±20 gives a range of 40, therefore need 6

bits.

◦ C) If a control instruction is in location 3, what is
the PC-relative offset of address 10. Assume that
the control transfer instructions work the same way
as in the LC-3.
 Answer: PC counter is incremented to 4, 10-4 = 6.

 5.8) We want to increase the number of
registers we can specify in the LC-3 ADD
instruction to 32. Do you see any problem
with that? Explain.

 5.8) We want to increase the number of
registers we can specify in the LC-3 ADD
instruction to 32. Do you see any problem
with that? Explain.

 Answer: We would need 5 bits to specify 32
registers. There would not be enough bits for
the ADD instruction if we specify it in 16 bits.
We would therefore need to rewrite the ISA
and use a larger instruction size.

 5.12) After executing the following LC-3
instruction: ADD R2, R0, R1, we notice that
R0[15] equals R1[15], but is different from
R2[15]. We are told that R0 and R1 contain
UNSIGNED integers. Under what conditions
can we trust the result in R2?

 5.12) After executing the following LC-3
instruction: ADD R2, R0, R1, we notice that
R0[15] equals R1[15], but is different from
R2[15]. We are told that R0 and R1 contain
UNSIGNED integers. Under what conditions can
we trust the result in R2?

 Answer: There is the potential for an overflow
condition to occur if the result of the addition of
R0 and R1 is larger than the available bits. We
can only be sure the result is ok if the sum of R0
and R1 is less than or equal to 65,535. E.g. if we
noticed R0[15] = R1[15] = 0 then we would know
the result would be ok, even when r2[15] = 1.

 5.14) The LC-3 does not have an opcode for the
logical function OR. However, we can write a
sequence of instructions to implement OR. The
four instruction sequence below performs the OR
of the contents of register 1 and register 2 and
puts the result in register 3. Fill in the two
missing instructions so that the four instruction
sequence will do the job:

 (1): 1001 100 001 111111

 (2):

 (3): 0101 110 100 000 101

 (4):

 5.14) The LC-3 does not have an opcode for the
logical function OR. However, we can write a
sequence of instructions to implement OR. The four
instruction sequence below performs the OR of the
contents of register 1 and register 2 and puts the
result in register 3. Fill in the two missing
instructions so that the four instruction sequence will
do the job:

 Use DeMorgan‟s law:
 Answer:
 (1): 1001 100 001 111111 (NOT R4 R1)
 (2): 1001 101 010 111111 (NOT R5 R2)
 (3): 0101 110 100 000 101 (AND R6 R4 R5)
 (4): 1001 011 110 111111 (NOT R3 R6)

 5.16) Which LC-3 addressing mode makes the
most sense to use under the following
conditions. (There may be more than once
correct answer, justify.)

 A) You want to load one value from an address
which is less than ±28 locations away.

 B) You want to load one value from an address
which is more than ±28 locations away.

 C) You want to load an array of sequential
addresses.

 5.16) Which LC-3 addressing mode makes the
most sense to use under the following
conditions. (There may be more than once
correct answer, justify.)

 A) You want to load one value from an address
which is less than ±28 locations away.
◦ Answer: PC-relative addressing (9 bits for offset)

 B) You want to load one value from an address
which is more than ±28 locations away.
◦ Answer: Indirect (16 bits available)

 C) You want to load an array of sequential
addresses.
◦ Answer: PC-relative

 5.20) If we made the LC-3 ISA such that we
allow the LD instruction to load data only ±32
locations away from the incremented PC
value, how many bits would be required for
the PC-relative offset in the LD instruction?

 5.20) If we made the LC-3 ISA such that we
allow the LD instruction to load data only ±32
locations away from the incremented PC
value, how many bits would be required for
the PC-relative offset in the LD instruction?

 Answer: ±32 = 65 states => need 7 bits

 5.22) The PC contains x3010. The following
memory locations contain values as shown:
◦ x3050: x70A4
◦ x70A2: x70A3
◦ x70A3: xFFFF
◦ x70A4: x123B

 The following three LC-3 instructions are
then executed, causing a value to be loaded
into R6.

 ->

 …what is that value?

 x3010 1110 0110 0011 1111

 x3011 0110 1000 1100 0000

 x3012 0110 1101 0000 0000

 We could replace this three instruction
sequence with a single instruction. What is it?

 5.22) Answer:

LEA R3 x3F, PC = x3011, therefore R3 = x3050

LDR R4 R3 0, therefore R4 = x70A4

LDR R6 R4 0, therefore R6 = x123B

Could replace these with LDI R6 000111111,
which takes the value at the address stored in
memory location x3050 (x3011 + x003F)

 5.28) It is the case that we REALLY don‟t need to
have load indirect (1010) and store indirect
(1011) instructions. We can accomplish the same
results using other instruction sequences instead
of using these instructions. Replace the store
indirect (1011) instruction in the code below with
whatever instructions are necessary to perform
the same function:

 x3000 0010 0000 0000 0010
 x3001 1011 0000 0000 0010
 x3002 1111 0000 0010 0101
 x3003 0000 0000 0100 1000
 x3004 1111 0011 1111 1111

 It is the case that we REALLY don‟t need to have load indirect
(1010) and store indirect (1011) instructions. We can accomplish
the same results using other instruction sequences instead of
using these instructions. Replace the store indirect (1011)
instruction in the code below with whatever instructions are
necessary to perform the same function:

 x3000 0010 0000 0000 0010 (LD R0 “x3001”+2)
 x3001 1011 0000 0000 0010 (STI R0 “x3002”+2)
 x3002 1111 0000 0010 0101
 x3003 0000 0000 0100 1000
 x3004 1111 0011 1111 1111

◦ Answer:
◦ Can replace this with:
◦ x3001 1110 001 000000011 (LEA R1 3 (its 3 instead of 2 since we have

an extra instruction, so we want to write over the memory address with
the same contents as in the original code))

◦ x3002 0111 000 001 000000 (STR R0 R1 0)

