
Introduction to Assembly and LC-3 SimulatorIntroduction to Assembly and LC 3 Simulator

 Last tutorials we have learnt how to
R d i l b i bi f (4◦ Represent decimal numbers in binary forms (4
ways).
◦ Add, subtract, multiply and divide numbers in

bi f (2’ l)binary form (2’s complement).
◦ Detect invalid overflow/underflow.
◦ Understand bit wise operations like OR, AND,

NOT…
◦ Understand shift left (<<), shift right arithmetically

(>>) and logically (>>>).g
 We need to visualise what we have learnt:
◦ Assembly and LC-3 Simulator

 A Central Processing Unit (CPU), or sometimes just
called processor, is a description of a class of logic
machines that can execute computer programsmachines that can execute computer programs.

 Internal memory inside CPU called registers, caches

 00111010101001
 Machine code Lowes

t

 ldiq $a0, CALLSYS_GETCHAR;
 call pal CALL PAL CALLSYS;

 Low  Assembly code
 call_pal CALL_PAL_CALLSYS;

 C code Mediu

 C++/Java/.NET

m

 High /J /
…

g

h CPU: 3.0 Ghz
 Bus: 667 Mhz

R 400 Mh Ram: 400 Mhz

 Those are connected through bus (which is a
subsystem that transfers data betweensubsystem that transfers data between
computer components inside a computer)

 Connection speeds between them are different.
 Use registers to deal with calculation if possible! Use registers to deal with calculation if possible!

 Download links are provided in tutorial page
 After installation, you will see 2 exe programs

(windows): LC3Edit.exe and Simulate.exe.

 LC3Edit is editor program (IDE).
 Simulate is LC3 simulator program (virtual Simulate is LC3 simulator program (virtual

computer which execute assembly code).

 You can edit your program here using binary
code, hexadecimal code and assembly code.

 After finish editing, you can export to .obj file
which can be run by LC3 simulator.

 Include 2 frames:
console (likes
computer screen)

 Registers and
values stored in
register computer screen)

and simulator
(computer)

register
 Memory and values stored in

memory

 Each program should be placed in it's own .asm file.
 The files should be entitled *.asm like example.asm... The files should be entitled .asm like example.asm...
 Each program should begin in memory at address x3000. This is

accomplished via the .ORIG directive, which should be the first
line in each file.

 The end of the program should consist of two lines: the The end of the program should consist of two lines: the
penultimate line should contain the HALT instruction, and the
last line in the file should contain the .END directive to inform
the assembler that this is the end of the program.

 So all of assembly files should be of the following form: So… all of assembly files should be of the following form:
◦ .ORIG x3000
◦ ...
◦ your code goes here
◦ ...
◦ HALT
◦ .END

 See example programs.

 .ORIGx3000
T AND i i ;;; Test AND instructions

 ADD R1,R1,#5 ; R1: 0x5
 ADD R2,R2,#-2 ; R2: 0xfffe ADD R2,R2,# 2 ; R2: 0xfffe
 ADD R3,R2,R1 ; R3: 0x3
 AND R4,R3,#-1 ; R4: 0x3

AND R5 R1 R4 R5 0 1 AND R5,R1,R4 ; R5: 0x1
 ADD R6,R6,#-1 ; R6: 0xffff
 HALT HALT
 .END
 ;;; Detail will be talked in tutorial

 .ORIGx3000
 ;;; Test NOT instructions ;;; Test NOT instructions
 AND R0,R0,#0
 NOT R0,R0

AND R1 R1 #0 AND R1,R1,#0
 ADD R1,R1,#1
 NOT R1,R1,
 NOT R1,R1
 ADD R0,R0,R1
 HALT HALT
 .END
 ;;; Detail will be talked in tutorial

 .ORIG x3000
 LD R2, Num1
 LD R3, Num2
 ADD R4, R2, R3
 DONE HALT

N 1 FILL 5 Num1 .FILL 5
 Num2 .FILL 6
 END .END

 The LC-3 instruction set implements fifteen
types of instructions with a sixteenth opcodetypes of instructions, with a sixteenth opcode
reserved for later use.

 Arithmetic instructions available include addition,
bitwise AND and bitwise NOT with the first twobitwise AND, and bitwise NOT, with the first two
of these able to use both registers and sign-
extended immediate values as operands.

 The LC-3 can also implement any bitwise logical The LC 3 can also implement any bitwise logical
function, owing to the fact that NOT and AND
together are logically complete.

 So A OR B = NOT[(NOT A) AND (NOT B)] So A OR B NOT[(NOT A) AND (NOT B)]
 Then AND, OR, NOT can be used to implement

XOR

 Run some other examples yourselves such as
simple_calculator.asm

 Modify examples with your knowledge of LC3
and assembly taught in classand assembly taught in class

 Try some previous data representation
examples on LC3examples on LC3.

 Try to implement OR and XOR by modify
demo1.asm

