Computer Science 210
tutorial 3

Introduction to Assembly and LC-3 Simulator

Data representation part

» Last tutorials we have learnt how to
- Represent decimal numbers in binary forms (4
ways).
- Add, subtract, multiply and divide numbers in
binary form (2’s complement).
- Detect invalid overflow/underflow.

- Understand bit wise operations like OR, AND,
NOT...

- Understand shift left (<<), shift right arithmetically
(>>) and logically (>>>).

» We need to visualise what we have learnt:
- Assembly and LC-3 Simulator

Central Processing Unit

called processor, is a description of a class of logic
machines that can execute

Inside Central Processing Unit (CPU)

Pead »
Conimol (PU Wiribe |
Fech
Decpde P PMemory
Load | | Program couner et
ERecule < Itese: resisters ce
S | | Floaine pom registers _ ~— _
| s
MAU Input
LI Catke
1B || 12 Cack
Ot ot
|

| I

» Internal memory inside CPU called registers, caches

Language levels

» 00111010101001
!L__owes » Machine code
L ow Idiq $a0, CALLSYS GETCHAR; Assembly code
call_ pal CALL_PAL _CALLSYS;
!
Mediu C code
m
!

High C++/Java/.NET

CPU - memory - register

Read Registers] 32-64 1 cyele
Conmel. CPU Wiite L1 cache 56 KE 2 cycles
il Memaory L2 cache 312 KB - 2MB 6 - 10 cycles
Degde P
Load | | Frogram comee > External Memory J12MB -1 GB 100 - 300 cycles
e | E‘;fﬁ?@-mw g ~ Disks 160 GB - 250 GB | 107 cveles to seek
|] 17O
iy Input » CPU: 3.0 Ghz
L] Cacte
1] s i » Bus: 667 Mhz
|
— » Ram: 400 Mhz

» Those are connected through bus (which is a
subsystem that transfers data between
computer components inside a computer)

» Connection speeds between them are different.
» Use registers to deal with calculation if possible!

Install and run LC-3 Simulator

» Download links are provided in tutorial page

» After installation, you will see 2 exe programs
(windows): LC3Edit.exe and Simulate.exe.

tEgESdniEfcchde Editor Far Wi... @ Egu;lrtﬂe'-;lea}tc; For Windaows
» LC3Edit is editor program (IDE).

» Simulate is LC3 simulator program (virtual
computer which execute assembly code).

LC3Edit

File Edit Translate Help

D|S|@(&] =[] o |dal]8 5=

;: This LC2 assembler program loops rough the following operala
1) reads two numbers from memory {(from Huml and Hum2)
2) adds themn
4) puts the result in memory {(at Res1)
) Hext it performs a logical AHD between the two numbi
6) puts the result in memory {at Res?)

; R1: holds Humi value
3 RZ2: holds Hum? value
;: R3: holds result of operation

» You can edit your program here using binary
code, hexadecimal code and assembly code.

» After finish editing, you can export to .obj file
which can be run by LC3 simulator.

LC3 simulate.exe

|IPlease type in a Number : 3

@ 0= dumpo 07+

= 1I f,:l.ﬁ: | g.:.l

ROiFFE 32767 R4 x0006 & PC xFD7% =517 lnioir should hetween 0 and 9
Rl xFFFF -1 RS x0003 3 IR xBOZC -2043% [pleoace type in another Number : 3
R =wanno 0 RE x0000 O PSR x8001—5Z/67

B3 w0030 483 Fa REUra =hal e F Loading next pass, please run programe agair

wp xFD72 - 001000000000331 1 x2003 LD RO, xFD7D L trap was executed with an illegal wector r
#Fda 0010001000000011 x=2203 LD Rl, ®xFO7E |J-———- Halting the processcr —----
¥»IDYE 0010111000000011 wzZE03 LD R7, xFD7F
«FDT7C 11000001110000a0 =U1ca FET
®»FDYD 1111110100001011 =5D0B TRAF x0E
SFDYE 0000000000000011 =1003 NOF
#*IDYF 1111110100000111 Z«FDO7 TRAP ®07

xFDo 00000000000010L5° =0004 MOF

. Registersand ' Include 2 frames:
values stored in console (|I|(€S
register computer screen)

» Memory and values stored in gnd simulator

memory (computer)

LC3 assembly programs

» Each program should be placed in it's own .asm file.
» The files should be entitled *.asm like example.asm...
» Each program should begin in memory at address x3000. This is

accomplished via the .ORIG directive, which should be the first
line in each file.

» The end of the program should consist of two lines: the
enultimate line should contain the HALT instruction, and the
ast line in the file should contain the .END directive to inform

the assembler that this is the end of the program.

» So... all of assembly files should be of the following form:
o .ORIG x3000

o your code goes here

- HALT
> .END
» See example programs.

Run example: AND.asm

)
>
4
4
>
4
4
>
>
<
)

.ORIGXx3000
- Test AND instructions

ADD RT1,R1,#5 :RT1: Ox5
ADD R2,R2,#-2 : R2: Oxfffe
ADD R3,R2,R1 ;R3: 0x3
AND R4,R3,#-1 :;:R4: 0x3
AND R5,RT1,R4 ; R5: Oxl
ADD R6,R6,#-1 : R6: Oxffff
HALT

.END

-» Detail will be talked in tutorial

Run example: NOT.asm

) .ORIGXx3000

» oo Test NOT instructions
3 AND RO,R0,#0

) NOT RO,RO
3 AND R1,R1,#0
3 ADD R1,R1,#1
4
4
4
4
4
4

NOT R1,R’
NOT RI1,R’
ADD RO,RO,RT1
HALT
.END

- Detail will be talked in tutorial

Run example: demol.asm

.ORIG x3000

LD R2, Numl
LD R3, Num?2
ADD R4, R2, R3

DONE HALT
NumT FILL 5
Num?2 FILL 6
.END

)
4
4
)
4
4
)
)

Limited number of instruction sets
in LC 3

» The LC-3 instruction set implements fifteen
types of instructions, with a sixteenth opcode
reserved for later use.

» Arithmetic instructions available include addition,
bitwise AND, and bitwise NOT, with the first two
of these able to use both registers and sign-
extended immediate values as operands.

» The LC-3 can also implement any bitwise logical
function, owing to the fact that NOT and AND
together are logically complete.

» So A OR B = NOT[(NOT A) AND (NOT B)]

) Tlg)%n AND, OR, NOT can be used to implement
X

Exercises

» Run some other examples yourselves such as
simple_calculator.asm

» Modify examples with your knowledge of LC3
and assembly taught in class

» Try some previous data representation
examples on LC3.

» Try to implement OR and XOR by modify
demol.asm

