
Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Some slides prepared by Gregory T. Byrd, North Carolina State University

Revision

Lecture 23, 7May2013:

Assignment 2

•  Due yesterday
•  No late penalties

•  No extensions

•  Dropbox will stop accepting submissions after midnight tomorrow
(before Thursday lecture)

2013.05.07 CS210 2

To Be Posted Shortly

•  Model answers for assignments
•  Marks for Assignment 1

•  Slides from my Lectures(bundled)

2013.05.07 CS210 3

WHAT YOU NEED TO KNOW FOR
THE TEST

(in-class, Tuesday 14th May)

2013.05.07 CS210 5

What You Don’t Need to Know

•  Real processors: MIPS & Alpha
•  ASCII Table

•  LC-3 instruction format

•  Trap Codes, etc.

2013.05.07 CS210 6

BaseR 000000

DR

DR SR 111111

000000000000

SR

BaseR offset6

0000 trapvect8

0 00 BaseR 000000

1 PCoffset11

PCoffset9

PCoffset9

PCoffset9

PCoffset9STI

STR

TRAP

reserved

0123456789101112131415

zn p

DR SR1 1 imm50101

0000

000

DR SR1 0 00 SR20101

0001 DR SR1 1 imm5

0001 DR SR1 0 00 SR2

DR

DR

1100

1010

0110

1110

1001

1100

1000

0011

BaseR offset6

000 111 000000

SR1011

0111

1111

1101

SR

0100

DR0010

0100

PCoffset9

PCoffset9

BR

AND+

ADD+

ADD+

AND+

JMP

LD+

LDI+

LDR+

LEA+

NOT+

RET

RTI

ST

JSRR

JSR

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Introduction
Lecture 1, 5Mar13:

Chapter 1
Welcome Aboard

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

Introduction
Lecture 2, 7Mar13:

1-10

Two Recurring Themes

Abstraction
! Productivity enhancer – don’t need to worry about details…

Can drive a car without knowing how
the internal combustion engine works.

! …until something goes wrong!

Where’s the dipstick? What’s a spark plug?

! Important to understand the components and
how they work together.

Hardware vs. Software
! It’s not either/or – both are components of a computer system.

! Even if you specialize in one,
it is important to understand capabilities and limitations of both.

1-11

Big Idea #1: Universal Computing Device

All computers, given enough time and memory,
are capable of computing exactly the same things.

= =
!"#$%&'()*+&

,+-.%)'&
!/'+$0)"'/%+$&

1-12

Big Idea #2: Transformations Between Layers

!"#$%&'()

*+,-.+-&)

/,(0".12#,)3&0)4"1560&10."&))

761"#+"1560&10."&)

86"1.60()

9&:61&()

4%-#"605'()

1-13

Many Choices at Each Level

3#%:&)+)(;(0&')#<)&=.+2#,()

>+.((6+,))
&%6'6,+2#,)

?+1#$6)
60&"+2#,)@&AB$%+1C)3D@) 7.%2-"6A)

ED@F@4G) 8) 8HH) ?+:+)

/,0&%)IJK)!#L&"!8) G:6A&+)

8&%&"#,) G&5+%&') 40#')

@6MM%&B1+"";)+AA&") 8+"";B%##C+5&+A)+AA&")

87D3) N6M#%+") >+4()

!"#$%&'()*
1#(0)
M&"<#"'+,1&)
M#L&")
O&01PQ)

Chapter 2
Bits, Data Types,
and Operations

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

Representation & Arithmetic
Lecture 3, 8Mar13:

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

Arithmetic & Other Operations
Lecture 4, 12Mar13:

2-17

Unsigned Integers

Non-positional notation
!  could represent a number (“5”) with a string of ones (“11111”)
!  problems?

Weighted positional notation
!  like decimal numbers: “329”

!  “3” is worth 300, because of its position, while “9” is only worth 9

329
102 101 100

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

101
22 21 20

most
significant

least
significant

!"#$%

Unsigned Integers (cont.)

An n-bit unsigned integer represents any of 2n (integer) values:
from 0 to 2n-1.

!!% !#% !&% '()*+%

&% &% &% &%

&% &% #% #%

&% #% &% !%

&% #% #% ,%

#% &% &% -%

#% &% #% .%

#% #% &% /%

#% #% #% 0%

2-19

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!
! add from right to left, propagating carry

carry

))RSSRS))RSSRS))RRRR)
)H)RSSR)H)RSRR)H)R)
))RRSRR))RRRSR))RSSSS)

)
))))RSRRR)
)))H)RRR)

Subtraction, multiplication, division,…

!"!&%

Signed Integers

With n bits, we can distinguish 2n unique values
! assign about half to positive integers (1 through 2n-1)

and about half to negative (-2n-1 through -1)

!  that leaves two values: one for 0, and one extra

Positive integers
!  just like unsigned, but zero in most significant (MS) bit

00101 = 5

Negative integers
! Sign-Magnitude (or Signed-Magnitude) – set MS bit to show negative,

other bits are the same as unsigned
10101 = -5

! One’s complement – flip every bit to represent negative
11010 = -5

! In either case, MS bit indicates sign: 0=positive, 1=negative

!"!#%

Two’s Complement

Problems with sign-magnitude and 1’s complement
!  two representations of zero (+0 and –0)
! arithmetic circuits are complex

• How to add two sign-magnitude numbers?
– e.g., try 2 + (-3)

• How to add two one’s complement numbers?
– e.g., try 4 + (-3)

Two’s complement representation developed to make
circuits easy for arithmetic.
!  for each positive number (X), assign value to its negative (-X),

such that X + (-X) = 0 with “normal” addition, ignoring carry out

))SSRSR)OTQ))SRSSR)OUQ)
)H)RRSRR)OBTQ)H)RSRRR)OBUQ)
))SSSSS)OSQ))ORQSSSSS)OSQ)

2-22

Two’s Complement Representation

If number is positive or zero,
! normal binary representation, zeroes in upper bit(s)

If number is negative,
! start with positive number
!  flip every bit (i.e., take the one’s complement)

!  then add one

 00101 OTQ 01001 OUQ)
 11010 ORV()1#'MQ 10110 ORV()1#'MQ)

 + 1 + 1
 11011 OBTQ 10111 OBUQ)

2-23

Two’s Complement Signed Integers
MS bit is sign bit – it has weight –2n-1.
Range of an n-bit number: -2n-1 through 2n-1 – 1.

! The most negative number (-2n-1) has no positive counterpart.

"!,% !!% !#% !&%

&% &% &% &% &%

&% &% &% #% #%

&% &% #% &% !%

&% &% #% #% ,%

&% #% &% &% -%

&% #% &% #% .%

&% #% #% &% /%

&% #% #% #% 0%

"!,% !!% !#% !&%

#% &% &% &% "$%

#% &% &% #% "0%

#% &% #% &% "/%

#% &% #% #% ".%

#% #% &% &% "-%

#% #% &% #% ",%

#% #% #% &% "!%

#% #% #% #% "#%

2-24

“Biased” Representation of Signed Integers
All integers (positive & negative) are represented as an unsigned

integer supplemented with a “bias” to be subtracted out.

Range of an n-bit number: (0 - bias) through (2n-1 - bias).

Bias 7:

!,% !!% !#% !&% 12(3"0%

&% &% &% &% "0%
&% &% &% #% "/%
&% &% #% &% ".%
&% &% #% #% "-%
&% #% &% &% ",%
&% #% &% #% "!%
&% #% #% &% "#%
&% #% #% #% &%

!,% !!% !#% !&% 12(3"0%

#% &% &% &% #%
#% &% &% #% !%
#% &% #% &% ,%
#% &% #% #% -%
#% #% &% &% .%
#% #% &% #% /%
#% #% #% &% 0%
#% #% #% #% $%

2-25

Converting Binary (2’s C) to Decimal

1.  If leading bit is one, take two’s complement to get
a positive number.

2.  Add powers of 2 that have “1” in the
corresponding bit positions.

3.  If original number was negative,
add a minus sign.

,) !,)
&% #%
#% !%
!% -%
,% $%
-% #/%
.% ,!%
/% /-%
0% #!$%
$% !./%

4% .#!%
#&% #&!-%

)W))X))SRRSRSSS0L#)
))X)YKHYTHYZ)X)K[HZYHJ)
))X)RS[0&,)

Assuming 8-bit 2Vs complement numbers.

2-26

Converting Decimal to Binary (2’s C)

First Method: Division
1.  Find magnitude of decimal number. (Always positive.)

2.  Divide by two – remainder is least significant bit.

3.  Keep dividing by two until answer is zero,
writing remainders from right to left.

4.  Append a zero as the MS bit;
if original number was negative, take two’s complement.

 W))X))RS[0&,)RS[\Y)X)TY)"S)$60)S)
))))TY\Y)X)YK)"S)$60)R)
))))YK\Y)X)RZ)"S)$60)Y)
))))RZ\Y)X)K)"R)$60)Z)
))))K\Y)X)Z)"S)$60)[)
))))Z\Y)X)R)"R)$60)T)

)W)X)SRRSRSSS0L#)R\Y)X)S)"R)$60)K)

2-27

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two
1.  Find magnitude of decimal number.

2.  Subtract largest power of two
less than or equal to number.

3.  Put a one in the corresponding bit position.

4.  Keep subtracting until result is zero.

5.  Append a zero as MS bit;
if original was negative, take two’s complement.

 W))X))RS[0&,)RS[)B)K[)X)[S)$60)K)
))))[S)B)ZY)X)J)$60)T)
))))J)B)J)X)S)$60)Z)

)W)X)SRRSRSSS0L# *

+* !+*
"# $#
$# !#
!# %#
&# '#
%# $(#
)# &!#
(# (%#
*# $!'#

'# !)(#

+#)$!#

$"# $"!%#

2-28

Interesting Properties of ASCII Code

What is relationship between a decimal digit (‘0’, ‘1’, …)
and its ASCII code?

What is the difference between an upper-case letter
(‘A’, ‘B’, …) and its lower-case equivalent (‘a’, ‘b’, …)?

Given two ASCII characters, how do we tell which comes first in
alphabetical order?

Is 128 characters enough?
(http://www.unicode.org/)

No new operations -- integer arithmetic and logic.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University

Representation of Fractions &
Floating Point Numbers

Lecture 5, 14Mar13:

2-30

Fractions: Fixed-Point

How can we represent fractions?
! Use a “binary point” to separate positive

from negative powers of two -- just like “decimal point.”

! 2’s comp addition and subtraction still work

• only if binary points are aligned

 00101000.101 O[SPKYTQ
 + 11111110.110 OBRPYTQ

 00100111.011 OZUPZ]TQ

No new operations -- same as integer arithmetic.

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

Scientific Notation

Conventional (decimal) notation:

± mantissa x 10exponent

1 ! mantissa < 10

exponent is signed integer

Binary notation:

± mantissa x 2exponent

1 ! mantissa < 2

exponent is signed integer

1-31

Significant Digits

Accuracy of measurement leads to notion of Significant Digits
! For most purposes, we don’t need high precision

! Accuracy of calculations is generally limited by least precise numbers

! Can represent numbers with a few significant digits

• 6.0221415 * 1023 Avogadro’s Number (approximately)

• 299,792,458 meters/sec -- Speed of Light (exactly!)
– By definition, a meter is the distance light travels through a vacuum in exactly

1/299792458 seconds

• 3.141592…
– Computable to arbitrary accuracy, but

– More digits probably won’t improve result.

1-32

2-33

Floating Point Example

Single-precision IEEE floating point number:
 1 01111110 10000000000000000000000

! Sign is 1 – number is negative.

! Exponent field is 01111110 = 126 (decimal).

! Fraction is 0.100000000000… = 0.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75.

sign exponent fraction

2-34

IEEE Floating-Point Representation

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(
126

127exponent

=!!"=

##!!"=
"

"

S

S

N

N

Computer Science 210 s1
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

Floating Point/
Digital Logic Structures

Lecture 6, 15Mar13:

Chapter 3
Digital Logic
Structures

Computer Science 210 s1
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

Digital Logic Structures
Lecture 7, 19Mar13:

7-May-13 CS210 38

n-type MOS Transistor

MOS = Metal Oxide Semiconductor
!  two types: n-type and p-type

n-type
! when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

! when Gate has zero voltage,
open circuit between #1 and #2
(switch open)

Gate = 1

Gate = 0

Terminal #2 must be
connected to GND (0V).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 39

p-type MOS Transistor

p-type is complementary to n-type
! when Gate has positive voltage,

open circuit between #1 and #2
(switch open)

! when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +2.9V.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 40

Inverter (NOT Gate)

In Out

0 V 2.9 V

2.9 V 0 V

In Out

0 1

1 0

Truth table

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 41

NOR Gate (OR-NOT)

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 42

OR Gate

Add inverter to NOR.

A B C

0 0 0

0 1 1

1 0 1

1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 43

NAND Gate (AND-NOT)

A B C

0 0 1

0 1 1

1 0 1

1 1 0

Note: Parallel structure on top, serial on bottom.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 44

AND Gate

Add inverter to NAND.

A B C

0 0 0

0 1 0

1 0 0

1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 45

Basic Logic Gates
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

Sequential Logic & Finite State Machines
Lecture 8, 21Mar13:

Two Variables: 16 Unique Functions

2013.05.07 CS210 47

A! B! f0! f1! f2! f3! f4! f5! f6! f7! f8! f9! f10! f11! f12! f13! f14! f15!

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

OR!
A+B!

AND!
A B!

ZERO!

_ _!
A B!

A!
ONE!

XOR!
A B!

B!

XNOR!
A B!___!

A B!
NAND!

___!
A+B!
NOR!

=!

Creating a Function from a Truth Table

2013.05.07 CS210 48

A! B! C! F!

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1 Ci

Bi

Ai

Ci+1

Si
Ci

Bi

Ai

Ci+1

Si

_ _!
A B C!

_ _!
A B C!

 _ _!
A B C!

!
A B C!

A!A!

B!

C!

F!

7-May-13 CS210 49

Decoder

n inputs, 2n outputs
! exactly one output is 1 for each possible input pattern

2-bit
decoder

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Is this OK?

7-May-13 CS210 50

Multiplexer (MUX)

n-bit selector and 2n inputs, one output
! output equals one of the inputs, depending on selector

4-to-1 MUX

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 51

Full Adder

Add two bits and carry-in,
produce one-bit sum and carry-out. A B Cin S Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 52

Combinational vs. Sequential

Combinational Circuit
! always gives the same output for a given set of inputs

•  ex: adder always generates sum and carry,
regardless of previous inputs

Sequential Circuit
! stores information

! output depends on stored information (state) plus input

•  so a given input might produce different outputs,
depending on the stored information

! example: ticket counter

•  advances when you push the button
• output depends on previous state

! useful for building “memory” elements and “state machines”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 53

R-S Latch: Simple Storage Element (NOR)

R is used to “reset” or “clear” the element – set output to zero.
S is used to “set” the element – set output to one.

If both R and S are zero, out could be either zero or one.
! “quiescent” state – holds its previous value

! note: if a is 1, b is 0, and vice versa

1

0

0

0

1

1

0

0

0

0

0

0

1

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Gated D-Latch

2013.05.07 CS210 54

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z

A

S

Z

A

S

Z

D!

WE!

A

S

Z

OUT!

Two inputs: D (data) and WE (write enable)
! when WE = 1, latch is set to value of D

• S = D, R = NOT(D)

! when WE = 0, latch holds previous value

• S = R = 0

S!

R!

Gated D-Latch

2013.05.07 CS210 55

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z

A

S

Z

A

S

Z

D!

WE!

A

S

Z

OUT!

Two inputs: D (data) and WE (write enable)
! when WE = 1, latch is set to value of D

• S = D, R = NOT(D)

! when WE = 0, latch holds previous value

• S = R = 0

S!

R!

7-May-13 CS210 56

Register

A register stores a multi-bit value.
! We use a collection of D-latches, all controlled by a common WE.

! When WE=1, n-bit value D is written to register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

WE!

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

Z
A

S

Z
A

S

Z

A

S

Z

A

S

Z

D3!

Q3!

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

Z
A

S

Z
A

S

Z

A

S

Z

A

S

Z

D2!

Q2!

A

S

Z

A

S

Z

A

S
Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

Z
A

S

Z
A

S

Z

A

S

Z

A

S

Z

D1!

Q1!

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

ZA

S

Z

A

S

Z
A

S

Z

A

S

Z

A

S

Z
A

S

Z
A

S

Z

A

S

Z

A

S

Z

D0!

Q0!

A

S

Z

A

S

Z

7-May-13 CS210 57

22 x 3 Memory

address
decoder

word select word WE
address

write
enable

input bits

output bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 58

State Machine

Another type of sequential circuit
! Combines combinational logic with storage

! “Remembers” state, and changes output (and state)
based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 59

State of Sequential Lock

Our lock example has four different states,
labelled A-D:

A: The lock is not open,

 and no relevant operations have been performed.

B: The lock is not open,
 and the user has completed the R-13 operation.

C: The lock is not open,
 and the user has completed R-13, followed by L-22.

D: The lock is open.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 60

State Diagram

Shows states and
actions that cause a transition between states.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 61

Finite State Machine

A description of a system with the following components:

1.  A finite number of states

2.  A finite number of external inputs

3.  A finite number of external outputs

4.  An explicit specification of all state transitions

5.  An explicit specification of what determines each
external output value

Often described by a state diagram.
!  Inputs trigger state transitions.

!  Outputs are associated with each state (or with each transition).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 62

The Clock

Frequently, a clock circuit triggers transition from
one state to the next.

At the beginning of each clock cycle,
state machine makes a transition,
based on the current state and the external inputs.

! Not always required. In lock example, the input itself triggers a transition.

“1”

“0”

time! One
Cycle

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 63

Storage: Master-Slave Flipflop

A pair of gated D-latches,
to isolate next state from current state.

During 1st phase (clock=1),
previously-computed state
becomes current state and is
sent to the logic circuit.

During 2nd phase (clock=0),
next state, computed by
logic circuit, is stored in
Latch A.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A
S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A
S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A
S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

A
S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z A

S

Z

A

S

Z

A

S

Z

A

S

Z

A

S

Z

7-May-13 CS210 64

Complete Example

A blinking traffic sign
! No lights on

! 1 & 2 on

! 1, 2, 3, & 4 on

! 1, 2, 3, 4, & 5 on

!  (repeat as long as switch
is turned on)

DANGER
MOVE
RIGHT

1

2

3
4

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 65

Traffic Sign State Diagram

State bit S1 State bit S0

Switch on
Switch off

Outputs

Transition on each clock cycle.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 66

Traffic Sign Truth Tables

Outputs
(depend only on state: S1S0)

S1 S0 Z Y X

0 0 0 0 0

0 1 1 0 0

1 0 1 1 0

1 1 1 1 1

Lights 1 and 2
Lights 3 and 4

Light 5

Next State: S1!S0!
(depend on state and input)

On S1 S0 S1!" S0!"

0 X X 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

Switch

Whenever On=0, next state is 00.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 67

Traffic Sign Logic

Master-slave
flipflop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

Finite State Machines &
the von Neumann Model

Lecture 9, 22Mar13:

Chapter 4
The Von Neumann
Model

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

The von Neumann Computer
Lecture 10, 26Mar13:

7-May-13 CS210 71

LC-3 Data Path

Combinational
Logic

State Machine

Storage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 72

The Von Neumann Model
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

MAR MDR

MEMORY

* Monitor
* Printer
* LED
* Disk

OUTPUT

* Keyboard
* Mouse
* Scanner
* Card reader
* Disk

INPUT

PROCESSING UNIT

TEMPALU

PC
IR

CONTROL UNIT

7-May-13 CS210 73

Memory

2k x m array of stored bits
Address

! unique (k-bit) identifier of location

Contents
! m-bit value stored in location

Basic Operations:

LOAD
! read a value from a memory location

STORE
! write a value to a memory location

• • •

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 74

Interface to Memory

How does processing unit get data to/from memory?
MAR: Memory Address Register

MDR: Memory Data Register

To LOAD a location (A):
1.  Write the address (A) into the MAR.
2.  Send a “read” signal to the memory.

3.  Read the data from MDR.

To STORE a value (X) to a location (A):
1.  Write the data (X) to the MDR.
2.  Write the address (A) into the MAR.

3.  Send a “write” signal to the memory.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 75

Processing Unit

Functional Units
! ALU = Arithmetic and Logic Unit

! could have many functional units.
some of them special-purpose
(multiply, square root, …)

! LC-3 performs ADD, AND, NOT

Registers
! Small, temporary storage

! Operands and results of functional units

! LC-3 has eight registers (R0, …, R7), each 16 bits wide

Word Size
! number of bits normally processed by ALU in one instruction

! also width of registers

! LC-3 is 16 bits

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 76

Input and Output

Devices for getting data into and out of computer memory

Each device has its own interface,
usually a set of registers like the
memory’s MAR and MDR

! LC-3 supports keyboard (input) and monitor (output)
! keyboard: data register (KBDR) and status register (KBSR)
! monitor: data register (DDR) and status register (DSR)

Some devices provide both input and output

! disk, network

Program that controls access to a device is
usually called a driver.

INPUT
! " # $ % & '(
) % * + "
, - & . . " '
/ 0 + 1

OUTPUT
! " # $ % " &
' & $ # % (&
) * +
+ $, -

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 77

Control Unit

Orchestrates execution of the program

Instruction Register (IR) contains the current instruction.

Program Counter (PC) contains the address
of the next instruction to be executed.

Control unit:
! reads an instruction from memory

•  the instruction’s address is in the PC

!  interprets the instruction, generating signals
that tell the other components what to do

•  an instruction may take many machine cycles to complete

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

The Instruction Cycle
Ch. 5: The LC-3 ISA

Lecture 11, 28Mar13:

7-May-13 CS210 79

Instruction Processing

Decode instruction

Evaluate address

Fetch operands from memory

Execute operation

Store result

Fetch instruction from memory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 80

Instruction

The instruction is the fundamental unit of work.

Specifies two things:
!  opcode: operation to be performed

!  operands: data/locations to be used for operation

An instruction is encoded as a sequence of bits. (Just like data!)

! Often, but not always, instructions have a fixed length,
such as 16 or 32 bits.

! Control unit interprets instruction:
generates sequence of control signals to carry out operation.

! Operation is either executed completely, or not at all.

A computer’s instructions and their formats is known as its
Instruction Set Architecture (ISA).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 5
The LC-3

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Ch. 5: The LC-3 ISA
Lecture 12, 4Apr13:

7-May-13 CS210 83

Example: LC-3 ADD Instruction

LC-3 has 16-bit instructions.
! Each instruction has a four-bit opcode, bits [15:12].

LC-3 has eight registers (R0-R7) for temporary storage.
! Sources and destination of ADD are registers.

“Add the contents of R2 to the contents of R6,
and store the result in R6.”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 84

Example: LC-3 LDR Instruction

Load instruction – reads data from memory
Base + offset mode:

! add offset to base register – result is memory address

!  load from memory address into destination register

“Add the value 6 to the contents of R3 to form a
memory address. Load the contents of that
memory location to R2.”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 85

Example: LC-3 JMP Instruction

Set the PC to the value contained in a register. This becomes the
address of the next instruction to fetch.

“Load the contents of R3 into the PC.”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 86

Instruction Processing Summary

Instructions look just like data – it’s all interpretation.

Three basic kinds of instructions:
! computational instructions (ADD, AND, …)

! data movement instructions (LD, ST, …)

! control instructions (JMP, BRnz, …)

Six basic phases of instruction processing:

 F # D # EA # OP # EX # S
! not all phases are needed by every instruction

! phases may take variable number of machine cycles

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 87

Control Unit State Diagram

The control unit is a state machine. Here is part of a
simplified state diagram for the LC-3:

A more complete state diagram is in Appendix C.
It will be more understandable after Chapter 5.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Ch. 5: The LC-3
Lecture 13, 5Apr13:

7-May-13 CS210 89

NOT (Register)

Note: Src and Dst
could be the same register.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 90

ADD/AND (Register)
this zero means “register mode”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 91

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 92

LD (PC-Relative)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 93

ST (PC-Relative)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 94

LDI (Indirect)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

The LC-3
Chapter 7: Assembly Language

Lecture 14, 9Apr13:

7-May-13 CS210 96

LDI (Indirect)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 97

STI (Indirect)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 98

LDR (Base+Offset)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 99

STR (Base+Offset)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 100

Load Effective Address

Computes address like PC-relative (PC plus signed offset) and stores
the result into a register.

Note: The address is stored in the register,
 not the contents of the memory location.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 101

LEA (Immediate)
Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 102

Control Instructions

Used to alter the sequence of instructions
(by changing the Program Counter)

Conditional Branch

! branch is taken if a specified condition is true
•  signed offset is added to PC to yield new PC

! else, the branch is not taken
• PC is not changed, points to the next sequential instruction

Unconditional Branch (or Jump)
! always changes the PC

TRAP
! changes PC to the address of an OS “service routine”
! routine will return control to the next instruction (after TRAP)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 103

Condition Codes

LC-3 has three condition code bits:
 N -- negative
 Z -- zero
 P -- positive (greater than zero)

Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
!  Based on the last instruction that altered a register

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 104

Branch Instruction

Branch specifies one or more condition codes.
If the set bit is specified, the branch is taken.

! PC-relative addressing:
target address is made by adding signed offset (IR[8:0])
to current PC.

! Note: PC has already been incremented by FETCH stage.

! Note: Target must be within 256 words of BR instruction.

If the branch is not taken,
the next sequential instruction is executed.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 105

BR (PC-Relative)

What happens if bits [11:9] are all zero? All one?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 106

Using Branch Instructions

Compute sum of 12 integers.
Numbers start at location x3100. Program starts at location x3000.

R1 $ x3100
R3 $ 0
R2 $ 12

R2=0?

R4 $ M[R1]
R3 $ R3+R4
R1 $ R1+1
R2 $ R2-1

NO

YES

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7-May-13 CS210 107

TRAP

Calls a service routine, identified by 8-bit “trap vector.”

When routine is done,
PC is set to the instruction following TRAP.
(We’ll talk about how this works later.)

vector routine

x23 input a character from the keyboard

x21 output a character to the monitor

x25 halt the program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

108

Filled arrow
 = info to be processed.

Unfilled arrow
 = control signal.

LC-3
Data Path
Revisited

MDR

MEMORY

MAR

INPUT OUTPUT

16 16 16

16

16

1616

16

SR2MUX

16

16
LD.IR

16

16
16

16

GateMARMUX

+1

[10:0]

[8:0]

[5:0]

16

16

SEXT

SEXT

SEXT SEXT

MEM.EN, R.W

FINITE
STATE

MACHINE

CONTROL

16

16

1616

PC

+

IR

ZEXT

SR2
OUT

SR1
OUT

REG
FILE

[7:0]

2

PCMUX

GatePC

LD.PCMARMUX

ALUK

16 16

16
3

3 3

2

[4:0]

0

ADDR1MUX

2

ADDR2MUX

SR1SR2

R

LD.REG

DR

LD.MDR

GateALU

ALU
AB

LD.MAR

N Z P

LOGIC

LD.CC

Chapter 7
Assembly Language

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Chapter 7: Assembly Language
Lecture 15, 11Apr13:

31Mar10 CS210 111

Human-Readable Machine Language

Computers like ones and zeros…

Humans like symbols…

Assembler is a program that turns symbols into
machine instructions.

! ISA-specific:
close correspondence between symbols and instruction set

• mnemonics for opcodes

•  labels for memory locations
! additional operations for allocating storage and initializing data

ADD R6,R2,R6 ; increment index reg.

0001110010000110

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 112

An Assembly Language Program

;
; Program to multiply a number by the constant 6
;

 .ORIG x3050
 LD R1, SIX
 LD R2, NUMBER
 AND R3, R3, #0 ; Clear R3. It will
 ; contain the product.

; The inner loop
;
AGAIN ADD R3, R3, R2

 ADD R1, R1, #-1 ; R1 keeps track of
 BRp AGAIN ; the iteration.

;
 HALT

;
NUMBER .BLKW 1
SIX .FILL x0006
;

 .END

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 113

LC-3 Assembly Language Syntax

Each line of a program is one of the following:
! an instruction

! an assembler directive (or pseudo-op)

! a comment

Whitespace (between symbols) and case are ignored.

Comments (beginning with “;”) are also ignored.

An instruction has the following format:

LABEL OPCODE OPERANDS ; COMMENTS

optional mandatory

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 114

Opcodes and Operands

Opcodes
!  reserved symbols that correspond to LC-3 instructions
!  listed in Appendix A

•  ex: ADD, AND, LD, LDR, …

Operands
!  registers -- specified by Rn, where n is the register number
!  numbers -- indicated by # (decimal) or x (hex)
!  label -- symbolic name of memory location
!  separated by comma
!  number, order, and type correspond to instruction format

•  ex:
 ADD R1,R1,R3
 ADD R1,R1,#3
 LD R6,NUMBER
 BRz LOOP

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 115

Labels and Comments

Label
!  placed at the beginning of the line

!  assigns a symbolic name to the address corresponding to line

•  ex:
 LOOP ADD R1,R1,#-1
 BRp LOOP

Comment
!  anything after a semicolon is a comment

!  ignored by assembler

!  used by humans to document/understand programs

!  tips for useful comments:
•  avoid restating the obvious, as “decrement R1”

•  provide additional insight, as in “accumulate product in R6”

•  use comments to separate pieces of program

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 116

Assembler Directives

Pseudo-operations
! do not refer to operations executed by program

! used by assembler

!  look like instruction, but “opcode” starts with a full stop

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with value n

.STRINGZ n-character
string

allocate n+1 locations, initialize w/
characters and null terminator

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 117

Trap Codes

LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them.

Code Equivalent Description

HALT TRAP x25 Halt execution and print message to console.

IN TRAP x23 Print prompt on console,
read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.
Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.
Address of string is in R0.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 118

Style Guidelines

Use the following style guidelines to improve
the readability and understandability of your programs:

1.  Provide a program header, with author’s name, date, etc.,
and purpose of program.

2. Start labels, opcode, operands, and comments in same column
for each line. (Unless entire line is a comment.)

3. Use comments to explain what each register does.

4. Give explanatory comment for most instructions.

5. Use meaningful symbolic names.
•  Mixed upper and lower case for readability.

•  ASCIItoBinary, InputRoutine, SaveR1

6. Provide comments between program sections.

7.  Each line must fit on the page -- no wraparound or truncations.
•  Long statements split in aesthetically pleasing manner.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

The Assembly Process;
Chapter 8: Input & Output

Lecture 16, 12Apr13:

The Assembly Process

31Mar10 CS210 121

First Pass: Constructing the Symbol Table

1.  Find the .ORIG statement,
which tells us the address of the first instruction.
•  Initialize location counter (LC), which keeps track of the

current instruction.

2.  For each non-empty line in the program:
a)  If line contains a label, add label and LC to symbol table.

b)  Increment LC.
– NOTE: If statement is .BLKW or .STRINGZ,

increment LC by the number of words allocated.

3.  Stop when .END statement is reached.

NOTE: A line that contains only a comment is considered an empty line.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 122

Symbol Table Construction

Construct the symbol table for the program in Figure 7.1 .

Symbol Address

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31Mar10 CS210 123

; Program to count occurrences of a character in a file.
; Character to be input from the keyboard.
; Result to be displayed on the monitor.
; Program only works if no more than 9 occurrences are found.
;
;
; Initialization
;

 .ORIG x3000
 AND R2, R2, #0 ; R2 is counter, initially 0
 LD R3, PTR ; R3 is pointer to characters
 GETC ; R0 gets character input
 LDR R1, R3, #0 ; R1 gets first character

;
; Test character for end of file
;
TEST ADD R4, R1, #-4 ; Test for EOT (ASCII x04)

 BRz OUTPUT ; If done, prepare the output
;
; Test character for match. If a match, increment count.
;

 NOT R1, R1
 ADD R1, R1, R0 ; If match, R1 = xFFFF
 NOT R1, R1 ; If match, R1 = x0000
 BRnp GETCHAR ; If no match, do not increment
 ADD R2, R2, #1

;
; Get next character from file.
;
GETCHAR ADD R3, R3, #1 ; Point to next character.

 LDR R1, R3, #0 ; R1 gets next char to test
 BRnzp TEST

;
; Output the count.
;
OUTPUT LD R0, ASCII ; Load the ASCII template

 ADD R0, R0, R2 ; Convert binary count to ASCII
 OUT ; ASCII code in R0 is displayed.
 HALT ; Halt machine

;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x4000

 .END

0x3000
0x3001 PTR

31Mar10 CS210 124

Symbol Table Construction

Construct the symbol table for the program in Figure 7.1 .

Symbol Address
PTR ?

TEST 0x3004

OUTPUT 0x300E

GETCHAR 0x300B

ASCII 0x3012

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

0x3013

7-May-13 CS210 125

LC-3 Assembler

Using “assemble” (Unix) or LC3Edit (Windows),
generates several different output files.

This one gets
loaded into the
simulator.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 8
I/O

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Chapter 8: Input & Output
Lecture 17, 16Apr13:

7-May-13 CS215s1c 128

Speed Line

Time for light to travel 30 cm

One clock period
2 GHz

Total Disk
access time

Cache miss time
(Memory access time)

Cache hit time

Execute
one

instruction
(best case)

Time for sound to travel 30 cm

One disk revolution
(6-8 ms)

Transfer 1 char
at 56K baud

Read 1 byte
from disk

10-10 10-7 100 10-9 10-8 10-6 10-5 10-4 10-3 10-2 10-1

Time (Logarithmic Scale)

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Input & Output
Chap. 9: TRAP Routines

Lecture 18, 18Apr13:

8-130

I/O: Connecting to the Outside World

Types of I/O devices characterized by:
! behavior: input, output, storage

•  input: keyboard, motion detector, network interface

• output: monitor, printer, network interface

•  storage: disk, CD-ROM

! data rate: how fast can data be transferred?
• Latency: how long to get the first byte

• Bandwidth: rate that data is received

I/O Device Examples

7-May-13 CS215s1c 131

Device Behavior Partner Data Rate (KB/sec)
Keyboard Input Human 0.01

Mouse Input Human 0.02

Laser Printer Output Human 1,000

Graphics Display Output Human 30,000

Network-LAN Input or Output Machine 200-1,000,000

Internet Input or Output Machine 4,o00- ?

CD-ROM (1x) Storage Machine 150

DVD-ROM (1x) Storage Machine 1,352
Magnetic Disk Storage Machine 100,000

Flash Memory Storage-read Machine 1,000-300,000

 Storage-write Machine 1,000-10,000

8-132

I/O Controller

Control/Status Registers
! CPU tells device what to do -- write to control register

! CPU checks whether task is done -- read status register

Data Registers
! CPU transfers data to/from device

Device electronics
! performs actual operation

• pixels to screen, bits to/from disk, characters from keyboard

Graphics Controller Control/Status

Output Data Electronics CPU display

8-133

Programming Interface

How are device registers identified?
! Memory-mapped vs. special instructions

How is timing of transfer managed?
! Asynchronous vs. synchronous

Who controls transfer?
! CPU (polling) vs. device (interrupts)

8-134

Memory-Mapped vs. I/O Instructions

Instructions
! designate opcode(s) for I/O

! register and operation encoded in instruction

Memory-mapped
! assign a memory address

to each device register

! use data movement
instructions (LD/ST)
for control and data transfer

8-135

Transfer Control

Who determines when the next data transfer occurs?

Polling
! CPU keeps checking status register until

new data arrives OR device ready for next data

!  “Are we there yet? Are we there yet? Are we there yet?”

Interrupts
! Device sends a special signal to CPU when

new data arrives OR device ready for next data

! CPU can be performing other tasks instead of polling device.

!  “Wake me when we get there.”

8-136

Input from Keyboard

When a character is typed:
!  its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)

!  the “ready bit” (KBSR[15]) is set to one

! keyboard is disabled -- any typed characters will be ignored

When KBDR is read:
! KBSR[15] is set to zero

! keyboard is enabled

KBSR

KBDR
15 8 7 0

15 14 0

keyboard data

ready bit

8-137

Output to Monitor

When Monitor is ready to display another character:
!  the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:
! DSR[15] is set to zero

! character in DDR[7:0] is displayed

! any other character data written to DDR is ignored
(while DSR[15] is zero)

DSR

DDR
15 8 7 0

15 14 0

output data

ready bit

8-138

Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr
 BRzp POLL
 LDI R0, KBDRPtr

 ...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02

8-139

Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr
 BRzp POLL
 STI R0, DDRPtr

 ...

DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-140

Simple Implementation: Memory-Mapped Input

Address Control Logic
determines whether
MDR is loaded from
Memory or from KBSR/KBDR.

8-141

Simple Implementation: Memory-Mapped Output

Sets LD.DDR
or selects
DSR as input.

8-142

Keyboard Echo Routine

Usually, input character is also printed to screen.
! User gets feedback on character typed

and knows its ok to type the next character.

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
 BRzp POLL1
 LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
 BRzp POLL2
 STI R0, DDRPtr

 ...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-143

Interrupt-Driven I/O

External device can:
(1)  Force currently executing program to stop;

(2) Have the processor satisfy the device’s needs; and

(3) Resume the stopped program as if nothing happened.

Why?
!  Polling consumes a lot of cycles,

especially for rare events – these cycles can be used
for more computation.

!  Example: Process previous input while collecting
current input. (See Example 8.1 in text.)

8-144

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:
! A way for the I/O device to signal the CPU that an

interesting event has occurred.

! A way for the CPU to test whether the interrupt signal is set
and whether its priority is higher than the current program.

Generating Signal
! Software sets “interrupt enable” bit in device register.

! When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
15 14 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

8-145

Priority

Every instruction executes at a selected level of urgency.
LC-3: 8 priority levels (PL0-PL7)

! Example:

• Payroll program runs at PL0.
• Nuclear power correction program runs at PL6.

! It’s OK for PL6 device to interrupt PL0 program,
but not the other way around.

Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

8-146

Testing for Interrupt Signal

CPU looks at signal between STORE and FETCH phases.
If not set, continues with next instruction.

If set, transfers control to interrupt service routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

More details in Chapter 10.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Chap. 9: TRAP Routines
& Subroutines

Lecture 19, 19Apr13:

Chapter 9
TRAP Routines and
Subroutines

9-149

System Call

1. User program invokes system call.
2. Operating system code performs operation.

3. Returns control to user program.

In LC-3, this is done through the TRAP mechanism.

9-150

LC-3 TRAP Mechanism

1. A set of service routines.
! part of operating system -- routines start at arbitrary addresses

(convention is that system code is “below” x3000)
! up to 256 routines

2. Table of starting addresses.
! stored at x0000 through x00FF in memory
! called System Control Block in some architectures

3. TRAP instruction.
! used by program to transfer control to operating system

! 8-bit trap vector names one of the 256 service routines

4. A linkage back to the user program.
! want execution to resume

immediately after the TRAP instruction

9-151

TRAP Instruction

Trap vector
!  identifies which system call to invoke

! 8-bit index into table of service routine addresses

•  in LC-3, this table is stored in memory at 0x0000 – 0x00FF

• 8-bit trap vector is zero-extended into 16-bit memory address

Where to go
!  lookup starting address from table; place in PC

How to get back
! save address of next instruction (current PC) in R7

9-152

TRAP

NOTE: PC has already been incremented
during instruction fetch stage.

9-153

RET (JMP R7)

How do we transfer control back to
instruction following the TRAP?

We saved old PC in R7.

! JMP R7 gets us back to the user program at the right spot.

! LC-3 assembly language lets us use RET (return)
in place of “JMP R7”.

Must make sure that service routine does not
change R7, or we won’t know where to return.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

Subroutines; and Finally
Ch. 10: The Stack

Lecture 20, 30Apr13:

9-155

TRAP Mechanism Operation

1.  Lookup starting address.
2.  Transfer to service routine.
3.  Return (JMP R7).

9-156

TRAP

NOTE: PC has already been incremented
during instruction fetch stage.

9-157

Saving and Restoring Registers

Must save the value of a register if:
! Its value will be destroyed by service routine, and

! We will need to use the value after that action.

Who saves?
! caller of service routine?

• knows what it needs later, but may not know what gets altered by called
routine

! called service routine?

• knows what it alters, but does not know what will be needed later by
calling routine

9-158

Saving and Restoring Registers

Called routine -- “callee-save”
! Before start, save any registers that will be altered

(unless altered value is desired by calling program!)

! Before return, restore those same registers

Calling routine -- “caller-save”
! Save registers destroyed by own instructions or

by called routines (if known), if values needed later

•  save R7 before TRAP

•  save R0 before TRAP x23 (input character)
! Or avoid using those registers altogether

Values are saved by storing them in memory.

9-159

Subroutines

A subroutine is a program fragment that:
!  lives in user space
! performs a well-defined task
!  is invoked (called) by another user program
! returns control to the calling program when finished

Like a service routine, but not part of the OS
! not concerned with protecting hardware resources
! no special privilege required

Reasons for subroutines:

! reuse useful (and debugged!) code without having to
keep typing it in

! divide task among multiple programmers
! use vendor-supplied library of useful routines

9-160

JSR Instruction

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.
! saving the return address is called “linking”

!  target address is PC-relative (PC + Sext(IR[10:0]))

! bit 11 specifies addressing mode (one opcode, two instructions)

•  if =1, PC-relative: target address = PC + Sext(IR[10:0])
•  if =0, register: target address = contents of register IR[8:6]

9-161

JSR

NOTE: PC has already been incremented
during instruction fetch stage.

9-162

JSRR Instruction

Just like JSR, except Register addressing mode.
!  target address is Base Register

! bit 11 specifies addressing mode

What important feature does JSRR provide
that JSR does not?

9-163

JSRR

NOTE: PC has already been incremented
during instruction fetch stage.

9-164

Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.
!  just like TRAP

9-165

Passing Information to/from Subroutines

Arguments
! A value passed in to a subroutine is called an argument.

! This is a value needed by the subroutine to do its job.

! Examples:

•  In 2sComp routine, R0 is the number to be negated

•  In OUT service routine, R0 is the character to be printed.
•  In PUTS routine, R0 is address of string to be printed.

Return Values
! A value passed out of a subroutine is called a return value.
! This is the value that you called the subroutine to compute.

! Examples:

•  In 2sComp routine, negated value is returned in R0.

•  In GETC service routine, character read from the keyboard
is returned in R0.

9-166

Using Subroutines

In order to use a subroutine, a programmer must know:
!  its address (or at least a label that will be bound to its address)

!  its function (what does it do?)

• NOTE: The programmer does not need to know
how the subroutine works, but
what changes are visible in the machine’s state
after the routine has run.

!  its arguments (where to pass data in, if any)

!  its return values (where to get computed data, if any)

9-167

Saving and Restoring Registers

Since subroutines are just like service routines,
we also need to save and restore registers, if needed.

Generally use “callee-save” strategy,
except for return values.
! Save anything that the subroutine will alter internally

that shouldn’t be visible when the subroutine returns.

! It’s good practice to restore incoming arguments to
their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other
subroutine or service routine (TRAP).
! Otherwise, you won’t be able to return to caller.

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

Credits: Slides prepared by Gregory T. Byrd, North Carolina State University

The Stack

Chapter 10
And, Finally...
The Stack

10-170

Stack: An Abstract Data Type

An important abstraction that you will encounter
in many applications.

We will describe Interrupt-Driven I/O
! The rest of the story…

10-171

Stack: An Abstract Data Type

An important abstraction that you will encounter
in many applications.

We will describe three uses:

Interrupt-Driven I/O
! The rest of the story…

Evaluating arithmetic expressions
! Store intermediate results on stack instead of in registers

Data type conversion
! 2’s comp binary to ASCII strings

10-172

Stacks

A LIFO (last-in first-out) storage structure.
! The first thing you put in is the last thing you take out.

! The last thing you put in is the first thing you take out.

This means of access is what defines a stack,
not the specific implementation.

Two main operations:

 PUSH: add an item to the stack

 POP: remove an item from the stack

10-173

A Software Implementation

Data items don't move in memory,
just our idea about there the TOP of the stack is.

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / / TOP

/ / / / / /
/ / / / / /
/ / / / / /

#18
/ / / / / /

TOP

#12
#5
#31
#18

/ / / / / /

TOP #12
#5

#31
#18

/ / / / / /

TOP

Initial State After
One Push

After Three
More Pushes

After
Two Pops

x4000 x3FFF x3FFC x3FFE R6 R6 R6 R6

By convention, R6 holds the Top of Stack (TOS) pointer.

“High memory”
(large address)

“Low memory”
(small address)

10-174

Basic Push and Pop Code

For our implementation, stack grows downward
(when item added, TOS moves closer to 0)

Push
 ADD R6, R6, #-1 ; decrement stack ptr

 STR R0, R6, #0 ; store data (R0)

Pop
 LDR R0, R6, #0 ; load data from TOS
 ADD R6, R6, #1 ; decrement stack ptr

Preview of C: Stack Frames

Major support issues posed by subroutines
•  Linkage (how to get there and back)

•  Passing parameters (where are they)

•  Providing storage for local use (finding unique space for each invocation)

An activation record is a memory template of fixed size, allocated
atomically as part of invoking a subroutine
•  It allocates space to save parameters
•  It provides storage for variables defined in the subroutine

•  It provides a place for saving the return path.

A stack of activation records is an efficient way to address all three
issues

By convention, register R6 is used as the stack frame pointer.

2013.05.07 CS210 175

Computer Science 210 s1c
Computer Systems 1

2013 Semester 1

Lecture Notes

James Goodman!

Credits: “McGraw-Hill” slides prepared by Gregory T. Byrd, North Carolina State University

The Stack: Interrupt-Driven I/O
Lecture 21, 2May13:

10-180

Interrupt-Driven I/O (Part 2)

Interrupts were introduced in Chapter 8.
1.  External device signals need to be serviced.

2.  Processor saves state and starts service routine.

3.  When finished, processor restores state and resumes program.

Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

Now, we’re ready…

Interrupt is an unscripted subroutine call,
triggered by an external event.

10-181

Processor State

What state is needed to completely capture the
state of a running process?

Processor Status Register
!  Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter
! Pointer to next instruction to be executed.

Registers
! All temporary state of the process that’s not stored in memory.

10-182

Where to Save Processor State?

Can’t use registers.
! Programmer doesn’t know when interrupt might occur,

so she can’t prepare by saving critical registers.

! When resuming, need to restore state exactly as it was.

Memory allocated by service routine?
! Must save state before invoking routine,

so we wouldn’t know where.

! Also, interrupts may be nested –
that is, an interrupt service routine might also get interrupted!

Use a stack!
! Location of stack “hard-wired”.

! Push state to save, pop to restore.

10-183

Supervisor Stack

A special region of memory used as the stack
for interrupt service routines.
! Initial Supervisor Stack Pointer (SSP) stored in Saved.SSP.

! Another register for storing User Stack Pointer (USP):
Saved.USP.

Want to use R6 as stack pointer.
! So that our PUSH/POP routines still work.

When switching from User mode to Supervisor mode
(as result of interrupt), save R6 to Saved.USP.

10-184

Invoking the Service Routine – The Details

1.  If Priv = 1 (user),
Saved.USP " R6, then R6 " Saved.SSP.

2.  Push PSR and PC to Supervisor Stack.
3.  Set PSR[15] = 0 (supervisor mode).

4.  Set PSR[10:8] = priority of interrupt being serviced.

5.  Set PSR[2:0] = 0. [?]

6.  Set MAR = x01vv, where vv = 8-bit interrupt vector
provided by interrupting device (e.g., keyboard = x80).

7.  Load memory location (M[x01vv]) into MDR.
8.  Set PC = MDR; now first instruction of ISR will be fetched.

Note: This all happens between
the STORE RESULT of the last user instruction and
the FETCH of the first ISR instruction.

10-185

Returning from Interrupt

Special instruction – RTI – that restores state.

1.  Pop PC from supervisor stack. (PC = M[R6]; R6 = R6 + 1)
2.  Pop PSR from supervisor stack. (PSR = M[R6]; R6 = R6 + 1)

3.  If PSR[15] = 1, R6 = Saved.USP.
(If going back to user mode, need to restore User Stack Pointer.)

RTI is a privileged instruction.
!  Can only be executed in Supervisor Mode.

!  If executed in User Mode, causes an exception.
(More about that later.)

10-186

Example (1)

/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /
/ / / / / /

x3006 PC

Program A

ADD x3006

Executing ADD at location x3006 when Device B interrupts.

Saved.SSP

10-187

Example (2)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6200 PC

R6

Program A

ADD x3006

Saved.USP = R6. R6 = Saved.SSP.
Push PSR and PC onto stack, then transfer to
Device B service routine (at x6200).

x6200

ISR for
Device B

x6210 RTI

10-188

Example (3)

/ / / / / /

x3007
PSR for A

/ / / / / /

/ / / / / /

x6203 PC

R6

Program A

ADD x3006

Executing AND at x6202 when Device C interrupts.

x6200

ISR for
Device B

AND x6202

x6210 RTI

10-189

Example (4)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6300 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Push PSR and PC onto stack, then transfer to
Device C service routine (at x6300).

x6300

x6315 RTI

x6210 RTI

10-190

Example (5)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x6203 PC

R6

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6315; pop PC and PSR from stack.

x6300

x6315 RTI

x6210 RTI

10-191

Example (6)

/ / / / / /

x3007
PSR for A

x6203
PSR for B

x3007 PC

Program A

ADD x3006

x6200

ISR for
Device B

AND x6202

ISR for
Device C

Execute RTI at x6210; pop PSR and PC from stack.
Restore R6. Continue Program A as if nothing happened.

x6300

x6315 RTI

x6210 RTI

Saved.SSP

10-192

Exception: Internal Interrupt

When something unexpected happens
inside the processor, it may cause an exception.

Examples:
! Privileged operation (e.g., RTI in user mode)

! Executing an illegal opcode

! Divide by zero (or other forms of overflow)

! Accessing an illegal address (e.g., protected system memory)

Handled just like an interrupt
! Vector is determined internally by type of exception
! Priority is the same as running program

