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Assignment 2 

•  Due yesterday 
•  No late penalties 

•  No extensions 

•  Dropbox will stop accepting submissions after midnight tomorrow 
(before Thursday lecture) 
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To Be Posted Shortly 

•  Model answers for assignments 
•  Marks for Assignment 1 

•  Slides from my Lectures(bundled) 
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WHAT YOU NEED TO KNOW FOR 
THE TEST 

 
(in-class, Tuesday 14th May) 
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What You Don’t Need to Know 

•  Real processors: MIPS & Alpha 
•  ASCII Table 

•  LC-3 instruction format 

•  Trap Codes, etc. 
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Two Recurring Themes 

Abstraction 
! Productivity enhancer – don’t need to worry about details… 

Can drive a car without knowing how 
the internal combustion engine works. 

! …until something goes wrong! 

Where’s the dipstick?  What’s a spark plug? 

! Important to understand the components and 
how they work together. 

 

Hardware vs. Software 
! It’s not either/or – both are components of a computer system. 

! Even if you specialize in one, 
it is important to understand capabilities and limitations of both. 
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Big Idea #1: Universal Computing Device 

All computers, given enough time and memory, 
are capable of computing exactly the same things. 
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Big Idea #2: Transformations Between Layers 
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Many Choices at Each Level 
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Chapter 2 
Bits, Data Types, 
and Operations 

Computer Science 210 s1c 
Computer Systems 1 

2013 Semester 1 

Lecture Notes 

James Goodman!

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University 

Representation & Arithmetic 
Lecture 3, 8Mar13: 

Computer Science 210 s1c 
Computer Systems 1 

2013 Semester 1 

Lecture Notes 

James Goodman!

Credits: Adapted from slides prepared by Gregory T. Byrd, North Carolina State University 

Arithmetic & Other Operations 
Lecture 4, 12Mar13: 

2-17 

Unsigned Integers 

Non-positional notation 
!  could represent a number (“5”) with a string of ones (“11111”) 
!  problems? 

 

 

Weighted positional notation 
!  like decimal numbers: “329” 

!  “3” is worth 300, because of its position, while “9” is only worth 9 

329 
102 101 100 

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5 

101 
22 21 20 

most 
significant 

least 
significant 
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Unsigned Integers (cont.) 

An n-bit unsigned integer represents any of 2n (integer) values: 
from 0 to 2n-1. 

!!% !#% !&% '()*+%

&% &% &% &%

&% &% #% #%

&% #% &% !%

&% #% #% ,%

#% &% &% -%

#% &% #% .%

#% #% &% /%

#% #% #% 0%
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Unsigned Binary Arithmetic 

Base-2 addition – just like base-10! 
! add from right to left, propagating carry 

carry 

) )RSSRS ) )RSSRS ) )RRRR)
)H )RSSR )H )RSRR )H )R)
) )RRSRR ) )RRRSR ) )RSSSS)

)
) ) ) )RSRRR)
) ) )H )RRR)

Subtraction, multiplication, division,… 
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Signed Integers 

With n bits, we can distinguish 2n unique values 
! assign about half to positive integers (1 through 2n-1) 

and about half to negative (-2n-1 through -1) 

!  that leaves two values: one for 0, and one extra 

Positive integers 
!  just like unsigned, but zero in most significant (MS) bit 

00101 = 5 

Negative integers 
! Sign-Magnitude (or Signed-Magnitude) – set MS bit to show negative,  

other bits are the same as unsigned 
10101 = -5 

! One’s complement – flip every bit to represent negative 
11010 = -5 

! In either case, MS bit indicates sign: 0=positive, 1=negative 

!"!#%

Two’s Complement 

Problems with sign-magnitude and 1’s complement 
!  two representations of zero (+0 and –0) 
! arithmetic circuits are complex 

• How to add two sign-magnitude numbers? 
– e.g., try 2 + (-3) 

• How to add two one’s complement numbers?  
– e.g., try 4 + (-3) 

Two’s complement representation developed to make 
circuits easy for arithmetic. 
!  for each positive number (X), assign value to its negative (-X), 

such that X + (-X) = 0 with “normal” addition, ignoring carry out 

) )SSRSR )OTQ ) )SRSSR )OUQ)
)H )RRSRR )OBTQ )H )RSRRR )OBUQ)
) )SSSSS )OSQ ))ORQSSSSS )OSQ)
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Two’s Complement Representation 

If number is positive or zero, 
! normal binary representation, zeroes in upper bit(s) 

If number is negative, 
! start with positive number 
!  flip every bit (i.e., take the one’s complement) 

!  then add one 

  00101  OTQ   01001  OUQ)
  11010  ORV()1#'MQ   10110  ORV()1#'MQ)

 +  1  +  1   
  11011 OBTQ   10111  OBUQ)
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Two’s Complement Signed Integers 
MS bit is sign bit – it has weight –2n-1. 
Range of an n-bit number: -2n-1 through 2n-1 – 1. 

! The most negative number (-2n-1) has no positive counterpart. 

"!,% !!% !#% !&%

&% &% &% &% &%

&% &% &% #% #%

&% &% #% &% !%

&% &% #% #% ,%

&% #% &% &% -%

&% #% &% #% .%

&% #% #% &% /%

&% #% #% #% 0%

"!,% !!% !#% !&%

#% &% &% &% "$%

#% &% &% #% "0%

#% &% #% &% "/%

#% &% #% #% ".%

#% #% &% &% "-%

#% #% &% #% ",%

#% #% #% &% "!%

#% #% #% #% "#%
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“Biased” Representation of Signed Integers 
All integers (positive & negative) are represented as an unsigned 

integer supplemented with a “bias” to be subtracted out. 

Range of an n-bit number: (0 - bias) through (2n-1 - bias). 

Bias 7: 

!,% !!% !#% !&% 12(3"0%

&% &% &% &% "0%
&% &% &% #% "/%
&% &% #% &% ".%
&% &% #% #% "-%
&% #% &% &% ",%
&% #% &% #% "!%
&% #% #% &% "#%
&% #% #% #% &%

!,% !!% !#% !&% 12(3"0%

#% &% &% &% #%
#% &% &% #% !%
#% &% #% &% ,%
#% &% #% #% -%
#% #% &% &% .%
#% #% &% #% /%
#% #% #% &% 0%
#% #% #% #% $%
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Converting Binary (2’s C) to Decimal 

1.  If leading bit is one, take two’s complement to get 
a positive number. 

2.  Add powers of 2 that have “1” in the 
corresponding bit positions. 

3.  If original number was negative, 
add a minus sign. 

,) !,)
&% #%
#% !%
!% -%
,% $%
-% #/%
.% ,!%
/% /-%
0% #!$%
$% !./%

4% .#!%
#&% #&!-%

)W))X))SRRSRSSS0L#)
))X )YKHYTHYZ)X)K[HZYHJ)
))X )RS[0&,)

Assuming 8-bit 2Vs complement numbers. 
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Converting Decimal to Binary (2’s C) 

First Method: Division 
1.  Find magnitude of decimal number.  (Always positive.) 

2.  Divide by two – remainder is least significant bit. 

3.  Keep dividing by two until answer is zero, 
writing remainders from right to left. 

4.  Append a zero as the MS bit; 
if original number was negative, take two’s complement. 

 W))X))RS[0&, )RS[\Y )X )TY)"S )$60)S)
) ) ) )TY\Y )X )YK)"S )$60)R)
) ) ) )YK\Y )X )RZ)"S )$60)Y)
) ) ) )RZ\Y )X )K)"R )$60)Z)
) ) ) )K\Y )X )Z)"S )$60)[)
) ) ) )Z\Y )X )R)"R )$60)T)

)W)X )SRRSRSSS0L# )R\Y )X )S)"R )$60)K)
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Converting Decimal to Binary (2’s C) 

Second Method: Subtract Powers of Two 
1.  Find magnitude of decimal number. 

2.  Subtract largest power of two  
less than or equal to number. 

3.  Put a one in the corresponding bit position. 

4.  Keep subtracting until result is zero. 

5.  Append a zero as MS bit; 
if original was negative, take two’s complement. 

 W))X))RS[0&, )RS[)B)K[ )X )[S )$60)K)
) ) ) )[S)B)ZY )X )J )$60)T)
) ) ) )J)B)J )X )S )$60)Z)

)W)X )SRRSRSSS0L# * 

+* !+*
"# $#
$# !#
!# %#
&# '#
%# $(#
)# &!#
(# (%#
*# $!'#

'# !)(#

+# )$!#

$"# $"!%#
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Interesting Properties of ASCII Code 

What is relationship between a decimal digit (‘0’, ‘1’, …) 
and its ASCII code? 

 

What is the difference between an upper-case letter  
(‘A’, ‘B’, …) and its lower-case equivalent (‘a’, ‘b’, …)? 

 

Given two ASCII characters, how do we tell which comes first in 
alphabetical order? 

 

Is 128 characters enough? 
(http://www.unicode.org/) 

No new operations -- integer arithmetic and logic. 
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Fractions: Fixed-Point 

How can we represent fractions? 
! Use a “binary point” to separate positive 

from negative powers of two -- just like “decimal point.” 

! 2’s comp addition and subtraction still work 

• only if binary points are aligned 

  00101000.101 O[SPKYTQ 
 +  11111110.110 OBRPYTQ 

  00100111.011 OZUPZ]TQ 

No new operations -- same as integer arithmetic. 

2-1 = 0.5 

2-2 = 0.25 

2-3 = 0.125 

Scientific Notation 

 
Conventional (decimal) notation: 

± mantissa x 10exponent 

1 ! mantissa < 10 

exponent is signed integer 

 

Binary notation: 

± mantissa x 2exponent 

1 ! mantissa < 2 

exponent is signed integer 
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Significant Digits 

Accuracy of measurement leads to notion of Significant Digits 
! For most purposes, we don’t need high precision 

! Accuracy of calculations is generally limited by least precise numbers 

! Can represent numbers with a few significant digits 

• 6.0221415 * 1023 Avogadro’s Number (approximately) 

• 299,792,458 meters/sec -- Speed of Light (exactly!) 
– By definition, a meter is the distance light travels through a vacuum in exactly 

1/299792458 seconds 

• 3.141592… 
– Computable to arbitrary accuracy, but 

– More digits probably won’t improve result. 
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Floating Point Example 

Single-precision IEEE floating point number: 
 1 01111110 10000000000000000000000 

 

 
! Sign is 1 – number is negative. 

! Exponent field is 01111110 = 126 (decimal). 

! Fraction is 0.100000000000… = 0.5 (decimal). 

 

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75. 

sign exponent fraction 
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IEEE Floating-Point Representation 

IEEE 754 Floating-Point Standard (32-bits): 
 

 

 

 

S Exponent Fraction 

1b 8b 23b 
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n-type MOS Transistor 

MOS = Metal Oxide Semiconductor 
!  two types: n-type and p-type 

n-type 
! when Gate has positive voltage, 

short circuit between #1 and #2 
(switch closed) 

! when Gate has zero voltage, 
open circuit between #1 and #2 
(switch open) 

Gate = 1 

Gate = 0 

Terminal #2 must be 
connected to GND (0V). 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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p-type MOS Transistor 

p-type is complementary to n-type 
! when Gate has positive voltage, 

open circuit between #1 and #2 
(switch open) 

! when Gate has zero voltage, 
short circuit between #1 and #2 
(switch closed) 

Gate = 1 

Gate = 0 

Terminal #1 must be 
connected to +2.9V. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Inverter (NOT Gate) 

In Out 

0 V 2.9 V 

2.9 V 0 V 

In Out 

0 1 

1 0 

Truth table 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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NOR Gate (OR-NOT) 

A B C 

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Note: Serial structure on top, parallel on bottom. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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OR Gate 

Add inverter to NOR. 

A B C 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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NAND Gate (AND-NOT) 

A B C 

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Note: Parallel structure on top, serial on bottom. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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AND Gate 

Add inverter to NAND. 

A B C 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Basic Logic Gates 
Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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A! B! f0! f1! f2! f3! f4! f5! f6! f7! f8! f9! f10! f11! f12! f13! f14! f15!

0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 

1 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 

1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

OR!
A+B!

AND!
A B!

ZERO!

_  _!
A B!

A!
ONE!

XOR!
A B!

B!

XNOR!
A B!___!

A B!
NAND!

___!
A+B!
NOR!

=!

Creating a Function from a Truth Table 
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A! B! C! F!

0 0 0 0 

0 0 1 1 

0 1 0 1 

0 1 1 0 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 1 Ci

Bi

Ai

Ci+1

Si
Ci

Bi

Ai

Ci+1

Si

_  _!
A B C!

_      _!
A B C!

    _  _!
A B C!

!
A B C!

A!A!

B!

C!

F!
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Decoder 

n inputs, 2n outputs 
! exactly one output is 1 for each possible input pattern 

2-bit 
decoder 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

Is this OK? 
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Multiplexer (MUX) 

n-bit selector and 2n inputs, one output 
! output equals one of the inputs, depending on selector 

4-to-1 MUX 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Full Adder 

Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cout 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Combinational vs. Sequential 

Combinational Circuit 
! always gives the same output for a given set of inputs 

•  ex: adder always generates sum and carry, 
regardless of previous inputs 

Sequential Circuit 
! stores information 

! output depends on stored information (state) plus input 

•  so a given input might produce different outputs, 
depending on the stored information 

! example: ticket counter 

•  advances when you push the button 
• output depends on previous state 

! useful for building “memory” elements and “state machines” 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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R-S Latch: Simple Storage Element (NOR) 

R is used to “reset” or “clear” the element – set output to zero. 
S is used to “set” the element – set output to one. 

 

 

 

 

 

 

 

If both R and S are zero, out could be either zero or one. 
! “quiescent” state – holds its previous value 

! note: if a is 1, b is 0, and vice versa 

1 

0 

0 

0 

1 

1 

0 

0 

0 

0 

0 

0 

1 

1 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Z
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A
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Z

A

S

Z

D!

WE!

A

S

Z

OUT!

Two inputs: D (data) and WE (write enable) 
! when WE = 1, latch is set to value of D 

• S = D, R = NOT(D) 

! when WE = 0, latch holds previous value 

• S = R = 0 

S!

R!

Gated D-Latch 
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S

Z

A

S

Z

A

S
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A

S

Z

D!

WE!

A

S

Z

OUT!

Two inputs: D (data) and WE (write enable) 
! when WE = 1, latch is set to value of D 

• S = D, R = NOT(D) 

! when WE = 0, latch holds previous value 

• S = R = 0 

S!

R!
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Register 

A register stores a multi-bit value. 
! We use a collection of D-latches, all controlled by a common WE. 

! When WE=1, n-bit value D is written to register. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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22 x 3 Memory 

address 
decoder 

word select word WE 
address 

write 
enable 

input bits 

output bits 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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State Machine 

Another type of sequential circuit 
! Combines combinational logic with storage 

! “Remembers” state, and changes output (and state)  
based on inputs and current state 

 
State Machine 

Combinational 
Logic Circuit 

Storage 
Elements 

Inputs Outputs 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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State of Sequential Lock 

Our lock example has four different states, 
labelled A-D: 
 
A:  The lock is not open, 

 and no relevant operations have been performed. 

B:  The lock is not open, 
 and the user has completed the R-13 operation. 

C:  The lock is not open, 
 and the user has completed R-13, followed by L-22. 

D:  The lock is open. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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State Diagram 

Shows states and  
actions that cause a transition between states. 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 
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Finite State Machine 

A description of a system with the following components: 
 

1.  A finite number of states 

2.  A finite number of external inputs 

3.  A finite number of external outputs 

4.  An explicit specification of all state transitions 

5.  An explicit specification of what determines each 
external output value 

 

Often described by a state diagram. 
!  Inputs trigger state transitions. 

!  Outputs are associated with each state (or with each transition). 
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The Clock 

Frequently, a clock circuit triggers transition from 
one state to the next. 

 

 

 

 

 

At the beginning of each clock cycle, 
state machine makes a transition, 
based on the current state and the external inputs. 

! Not always required.  In lock example, the input itself triggers a transition. 

“1” 

“0” 

time! One 
Cycle 
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Storage: Master-Slave Flipflop 

A pair of gated D-latches,  
to isolate next state from current state. 

During 1st phase (clock=1), 
previously-computed state 
becomes current state and is 
sent to the logic circuit. 

During 2nd phase (clock=0), 
next state, computed by 
logic circuit, is stored in 
Latch A. 
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Complete Example 

A blinking traffic sign 
! No lights on 

! 1 & 2 on 

! 1, 2, 3, & 4 on 

! 1, 2, 3, 4, & 5 on 

!  (repeat as long as switch 
is turned on) 

DANGER 
MOVE 
RIGHT 

1 

2 

3 
4 

5 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

7-May-13 CS210 65 

Traffic Sign State Diagram 

State bit S1 State bit S0 

Switch on 
Switch off 

Outputs 

Transition on each clock cycle. 
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Traffic Sign Truth Tables 

Outputs 
(depend only on state: S1S0) 

S1 S0 Z Y X 

0 0 0 0 0 

0 1 1 0 0 

1 0 1 1 0 

1 1 1 1 1 

Lights 1 and 2 
Lights 3 and 4 

Light 5 

Next State: S1!S0! 
(depend on state and input) 

On S1 S0 S1!" S0!"

0 X X 0 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 1 

1 1 1 0 0 

Switch 

Whenever On=0, next state is 00. 
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Traffic Sign Logic 

Master-slave 
flipflop 
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LC-3 Data Path 

Combinational 
Logic 

State Machine 

Storage 
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The Von Neumann Model 
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MAR MDR

MEMORY

* Monitor
* Printer
* LED
* Disk

OUTPUT

* Keyboard
* Mouse
* Scanner
* Card reader
* Disk

INPUT

PROCESSING UNIT

TEMPALU

PC
IR

CONTROL UNIT
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Memory 

2k x m array of stored bits 
Address 

! unique (k-bit) identifier of location 

Contents 
! m-bit value stored in location 

 

Basic Operations: 

LOAD 
! read a value from a memory location 

STORE 
! write a value to a memory location 

• • • 

0000 
0001 
0010 
0011 
0100 
0101 
0110 

 
 

1101 
1110 
1111 

00101101 

10100010 
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Interface to Memory 

How does processing unit get data to/from memory? 
MAR: Memory Address Register 

MDR: Memory Data Register 

 

To LOAD a location (A): 
1.  Write the address (A) into the MAR. 
2.  Send a “read” signal to the memory. 

3.  Read the data from MDR. 

To STORE a value (X) to a location (A): 
1.  Write the data (X) to the MDR. 
2.  Write the address (A) into the MAR. 

3.  Send a “write” signal to the memory. 
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Processing Unit 

Functional Units 
! ALU = Arithmetic and Logic Unit 

! could have many functional units. 
some of them special-purpose 
(multiply, square root, …) 

! LC-3 performs ADD, AND, NOT 

Registers 
! Small, temporary storage 

! Operands and results of functional units 

! LC-3 has eight registers (R0, …, R7), each 16 bits wide 

Word Size 
! number of bits normally processed by ALU in one instruction 

! also width of registers 

! LC-3 is 16 bits 
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Input and Output 

Devices for getting data into and out of computer memory 
 
Each device has its own interface, 
usually a set of registers like the 
memory’s MAR and MDR 

! LC-3 supports keyboard (input) and monitor (output) 
! keyboard: data register (KBDR) and status register (KBSR) 
! monitor: data register (DDR) and status register (DSR) 

 
Some devices provide both input and output 

! disk, network 

Program that controls access to a device is  
usually called a driver. 

INPUT
! " # $ % & '(
) % * + "
, - & . . " '
/ 0 + 1

OUTPUT
! " # $ % " &
' & $ # % ( &
) * +
+ $ , -
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Control Unit 

Orchestrates execution of the program 
 
 

 

 

Instruction Register (IR) contains the current instruction. 

Program Counter (PC) contains the address 
of the next instruction to be executed. 

Control unit: 
! reads an instruction from memory  

•  the instruction’s address is in the PC 

!  interprets the instruction, generating signals  
that tell the other components what to do 

•  an instruction may take many machine cycles to complete 
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Instruction Processing 

Decode instruction 

Evaluate address 

Fetch operands from memory 

Execute operation 

Store result 

Fetch instruction from memory 
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Instruction 

The instruction is the fundamental unit of work. 

Specifies two things: 
!  opcode: operation to be performed 

!  operands: data/locations to be used for operation 

 

An instruction is encoded as a sequence of bits.  (Just like data!) 

! Often, but not always, instructions have a fixed length, 
such as 16 or 32 bits. 

! Control unit interprets instruction: 
generates sequence of control signals to carry out operation. 

! Operation is either executed completely, or not at all. 

 

A computer’s instructions and their formats is known as its 
Instruction Set Architecture (ISA). 
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Example: LC-3 ADD Instruction 

LC-3 has 16-bit instructions. 
! Each instruction has a four-bit opcode, bits [15:12]. 

LC-3 has eight registers (R0-R7) for temporary storage. 
! Sources and destination of ADD are registers. 

“Add the contents of R2 to the contents of R6, 
and store the result in R6.” 
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Example: LC-3 LDR Instruction 

Load instruction – reads data from memory 
Base + offset mode: 

! add offset to base register – result is memory address 

!  load from memory address into destination register 

“Add the value 6 to the contents of R3 to form a 
memory address.  Load the contents of that  
memory location to R2.” 
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Example: LC-3 JMP Instruction 

Set the PC to the value contained in a register.  This becomes the 
address of the next instruction to fetch. 

“Load the contents of R3 into the PC.” 
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Instruction Processing Summary 

Instructions look just like data – it’s all interpretation. 
 

Three basic kinds of instructions: 
! computational instructions (ADD, AND, …) 

! data movement instructions (LD, ST, …) 

! control instructions (JMP, BRnz, …) 

 

Six basic phases of instruction processing: 

 F # D # EA # OP # EX # S 
! not all phases are needed by every instruction 

! phases may take variable number of machine cycles 
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Control Unit State Diagram 

The control unit is a state machine.  Here is part of a 
simplified state diagram for the LC-3: 

A more complete state diagram is in Appendix C. 
It will be more understandable after Chapter 5. 
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NOT (Register) 

Note: Src and Dst 
could be the same register. 
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ADD/AND (Register) 
this zero means “register mode” 
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ADD/AND (Immediate) 

Note: Immediate field is 
sign-extended. 

this one means “immediate mode” 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

7-May-13 CS210 92 

LD (PC-Relative) 
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ST (PC-Relative) 
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LDI (Indirect) 
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LDI (Indirect) 
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STI (Indirect) 
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LDR (Base+Offset) 
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STR (Base+Offset) 
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Load Effective Address 

Computes address like PC-relative (PC plus signed offset) and stores 
the result into a register. 

 

Note:  The address is stored in the register, 
 not the contents of the memory location. 

 

Copyright © The McGraw-Hill Companies, Inc.  Permission required for reproduction or display. 

7-May-13 CS210 101 

LEA (Immediate) 
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Control Instructions 

Used to alter the sequence of instructions 
(by changing the Program Counter) 
 
Conditional Branch 

! branch is taken if a specified condition is true 
•  signed offset is added to PC to yield new PC 

! else, the branch is not taken 
• PC is not changed, points to the next sequential instruction 

Unconditional Branch (or Jump) 
! always changes the PC 

TRAP 
! changes PC to the address of an OS “service routine” 
! routine will return control to the next instruction (after TRAP) 
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Condition Codes 

LC-3 has three condition code bits: 
 N -- negative 
 Z -- zero 
 P -- positive (greater than zero) 

 

Set by any instruction that writes a value to a register 
(ADD, AND, NOT, LD, LDR, LDI, LEA) 

 

Exactly one will be set at all times 
!  Based on the last instruction that altered a register 
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Branch Instruction 

Branch specifies one or more condition codes. 
If the set bit is specified, the branch is taken. 

! PC-relative addressing: 
target address is made by adding signed offset (IR[8:0]) 
to current PC. 

! Note: PC has already been incremented by FETCH stage. 

! Note: Target must be within 256 words of BR instruction. 

 

If the branch is not taken, 
the next sequential instruction is executed. 
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BR (PC-Relative) 

What happens if bits [11:9] are all zero?  All one? 
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Using Branch Instructions 

Compute sum of 12 integers. 
Numbers start at location x3100.  Program starts at location x3000. 

R1 $ x3100 
R3 $ 0 
R2 $ 12 

R2=0? 

R4 $ M[R1] 
R3 $ R3+R4 
R1 $ R1+1 
R2 $ R2-1 

NO 

YES 
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TRAP 

Calls a service routine, identified by 8-bit “trap vector.” 
 

 

 

 

 

 

When routine is done,  
PC is set to the instruction following TRAP. 
(We’ll talk about how this works later.) 

 

vector routine 

x23 input a character from the keyboard 

x21 output a character to the monitor 

x25 halt the program 
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Human-Readable Machine Language 

Computers like ones and zeros… 
 

Humans like symbols… 

 

 

Assembler is a program that turns symbols into 
machine instructions. 

! ISA-specific: 
close correspondence between symbols and instruction set 

• mnemonics for opcodes 

•  labels for memory locations 
! additional operations for allocating storage and initializing data 

ADD  R6,R2,R6  ; increment index reg. 

0001110010000110 
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An Assembly Language Program 

; 
; Program to multiply a number by the constant 6 
; 

 .ORIG  x3050 
 LD  R1, SIX 
 LD  R2, NUMBER 
 AND  R3, R3, #0  ; Clear R3.  It will 
   ; contain the product. 

; The inner loop 
; 
AGAIN  ADD  R3, R3, R2 

 ADD  R1, R1, #-1  ; R1 keeps track of 
 BRp  AGAIN  ; the iteration. 

; 
 HALT 

; 
NUMBER  .BLKW  1 
SIX  .FILL  x0006 
; 

 .END 
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LC-3 Assembly Language Syntax 

Each line of a program is one of the following: 
! an instruction 

! an assembler directive (or pseudo-op) 

! a comment 

Whitespace (between symbols) and case are ignored. 

Comments (beginning with “;”) are also ignored. 

 

An instruction has the following format: 

LABEL OPCODE OPERANDS ; COMMENTS 

optional mandatory 
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Opcodes and Operands 

Opcodes 
!  reserved symbols that correspond to LC-3 instructions 
!  listed in Appendix A 

•  ex:  ADD, AND, LD, LDR, … 

Operands 
!  registers -- specified by Rn, where n is the register number 
!  numbers -- indicated by # (decimal) or x (hex) 
!  label -- symbolic name of memory location 
!  separated by comma 
!  number, order, and type correspond to instruction format 

•  ex:  
 ADD R1,R1,R3 
 ADD R1,R1,#3 
 LD  R6,NUMBER 
 BRz LOOP 
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Labels and Comments 

Label 
!  placed at the beginning of the line 

!  assigns a symbolic name to the address corresponding to line 

•  ex:   
 LOOP  ADD R1,R1,#-1 
  BRp LOOP 

Comment 
!  anything after a semicolon is a comment 

!  ignored by assembler 

!  used by humans to document/understand programs 

!  tips for useful comments: 
•  avoid restating the obvious, as “decrement R1” 

•  provide additional insight, as in “accumulate product in R6” 

•  use comments to separate pieces of program 
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Assembler Directives 

Pseudo-operations 
! do not refer to operations executed by program 

! used by assembler 

!  look like instruction, but “opcode” starts with a full stop 

Opcode Operand Meaning 

.ORIG address starting address of program 

.END end of program 

.BLKW n allocate n words of storage 

.FILL n allocate one word, initialize with value n 

.STRINGZ n-character  
string 

allocate n+1 locations, initialize w/
characters and null terminator 
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Trap Codes 

LC-3 assembler provides “pseudo-instructions” for 
each trap code, so you don’t have to remember them. 

Code Equivalent Description 

HALT TRAP x25 Halt execution and print message to console. 

IN TRAP x23 Print prompt on console, 
read (and echo) one character from keybd. 
Character stored in R0[7:0]. 

OUT TRAP x21 Write one character (in R0[7:0]) to console. 

GETC TRAP x20 Read one character from keyboard. 
Character stored in R0[7:0]. 

PUTS TRAP x22 Write null-terminated string to console. 
Address of string is in R0. 
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Style Guidelines 

Use the following style guidelines to improve 
the readability and understandability of your programs: 

1.  Provide a program header, with author’s name, date, etc., 
and purpose of program.  

2. Start labels, opcode, operands, and comments in same column 
for each line.  (Unless entire line is a comment.) 

3. Use comments to explain what each register does. 

4. Give explanatory comment for most instructions. 

5. Use meaningful symbolic names. 
•  Mixed upper and lower case for readability. 

•  ASCIItoBinary, InputRoutine, SaveR1 

6. Provide comments between program sections. 

7.  Each line must fit on the page -- no wraparound or truncations. 
•  Long statements split in aesthetically pleasing manner. 
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First Pass: Constructing the Symbol Table 

1.  Find the .ORIG statement, 
which tells us the address of the first instruction. 
•  Initialize location counter (LC), which keeps track of the 

current instruction. 

2.  For each non-empty line in the program: 
a)  If line contains a label, add label and LC to symbol table. 

b)  Increment LC. 
– NOTE: If statement is .BLKW or .STRINGZ, 

increment LC by the number of words allocated. 

3.  Stop when .END statement is reached. 

 

NOTE: A line that contains only a comment is considered an empty line. 
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Symbol Table Construction 

Construct the symbol table for the program in Figure 7.1 . 

Symbol Address 
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; Program to count occurrences of a character in a file. 
; Character to be input from the keyboard. 
; Result to be displayed on the monitor. 
; Program only works if no more than 9 occurrences are found. 
;  
; 
; Initialization 
; 

 .ORIG  x3000 
 AND  R2, R2, #0  ; R2 is counter, initially 0 
 LD  R3, PTR  ; R3 is pointer to characters 
 GETC   ; R0 gets character input 
 LDR  R1, R3, #0  ; R1 gets first character 

; 
; Test character for end of file 
; 
TEST  ADD  R4, R1, #-4  ; Test for EOT (ASCII x04) 

 BRz  OUTPUT  ; If done, prepare the output 
; 
; Test character for match.  If a match, increment count. 
; 

 NOT  R1, R1 
 ADD  R1, R1, R0  ; If match, R1 = xFFFF 
 NOT  R1, R1  ; If match, R1 = x0000 
 BRnp  GETCHAR  ; If no match, do not increment 
 ADD  R2, R2, #1 

; 
; Get next character from file. 
; 
GETCHAR  ADD  R3, R3, #1  ; Point to next character. 

 LDR  R1, R3, #0  ; R1 gets next char to test 
 BRnzp  TEST 

; 
; Output the count. 
; 
OUTPUT  LD  R0, ASCII  ; Load the ASCII template 

 ADD  R0, R0, R2  ; Convert binary count to ASCII 
 OUT   ; ASCII code in R0 is displayed. 
 HALT   ; Halt machine 

; 
; Storage for pointer and ASCII template 
; 
ASCII  .FILL  x0030 
PTR  .FILL  x4000 

 .END 
 
 
 

0x3000 
0x3001 PTR 
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Symbol Table Construction 

Construct the symbol table for the program in Figure 7.1 . 

Symbol Address 
PTR ? 

TEST 0x3004 

OUTPUT 0x300E 

GETCHAR 0x300B 

ASCII 0x3012 
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LC-3 Assembler 

Using “assemble” (Unix) or LC3Edit (Windows), 
generates several different output files. 

This one gets 
loaded into the 
simulator. 
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Speed Line 

Time for light to travel 30 cm 

One clock period 
2 GHz 

Total Disk 
access time 

Cache miss time 
(Memory access time) 

Cache hit time 

Execute 
one 

instruction 
(best case) 

Time for sound to travel 30 cm 

One disk revolution 
(6-8 ms) 

Transfer 1 char 
at 56K baud 

Read 1 byte 
from disk 
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I/O: Connecting to the Outside World 

Types of I/O devices characterized by: 
! behavior: input, output, storage 

•  input: keyboard, motion detector, network interface 

• output: monitor, printer, network interface 

•  storage: disk, CD-ROM 

! data rate: how fast can data be transferred? 
• Latency: how long to get the first byte 

• Bandwidth: rate that data is received 

I/O Device Examples 
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Device  Behavior  Partner  Data Rate (KB/sec) 
Keyboard  Input  Human  0.01 

Mouse  Input  Human  0.02 

Laser Printer  Output  Human  1,000 

Graphics Display  Output  Human  30,000 

Network-LAN  Input or Output  Machine  200-1,000,000 

Internet  Input or Output  Machine  4,o00- ? 

CD-ROM (1x)  Storage  Machine  150 

DVD-ROM (1x)  Storage  Machine  1,352 
Magnetic Disk  Storage  Machine  100,000 

Flash Memory  Storage-read  Machine  1,000-300,000 

 Storage-write  Machine  1,000-10,000 
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I/O Controller 

Control/Status Registers 
! CPU tells device what to do -- write to control register 

! CPU checks whether task is done -- read status register 

Data Registers 
! CPU transfers data to/from device 

 

 

 

 

Device electronics 
! performs actual operation 

• pixels to screen, bits to/from disk, characters from keyboard 

Graphics Controller Control/Status 

Output Data Electronics CPU display 

8-133 

Programming Interface 

How are device registers identified? 
! Memory-mapped vs. special instructions 

 

How is timing of transfer managed? 
! Asynchronous vs. synchronous 

 

Who controls transfer? 
! CPU (polling) vs. device (interrupts) 
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Memory-Mapped vs. I/O Instructions 

Instructions 
! designate opcode(s) for I/O 

! register and operation encoded in instruction 

 

 

 

Memory-mapped 
! assign a memory address  

to each device register 

! use data movement  
instructions (LD/ST) 
for control and data transfer 
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Transfer Control 

Who determines when the next data transfer occurs? 
 

Polling 
! CPU keeps checking status register until  

new data arrives OR device ready for next data 

!   “Are we there yet?  Are we there yet?  Are we there yet?” 
 

Interrupts 
! Device sends a special signal to CPU when 

new data arrives OR device ready for next data 

! CPU can be performing other tasks instead of polling device. 

!   “Wake me when we get there.” 
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Input from Keyboard 

When a character is typed: 
!  its ASCII code is placed in bits [7:0] of KBDR 

(bits [15:8] are always zero) 

!  the “ready bit” (KBSR[15]) is set to one 

! keyboard is disabled -- any typed characters will be ignored 

 

 

 

 

When KBDR is read: 
! KBSR[15] is set to zero 

! keyboard is enabled 

KBSR 

KBDR 
15 8 7 0 

15 14 0 

keyboard data 

ready bit 
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Output to Monitor 

When Monitor is ready to display another character: 
!  the “ready bit” (DSR[15]) is set to one 

 

 

 

 

When data is written to Display Data Register: 
! DSR[15] is set to zero 

! character in DDR[7:0] is displayed 

! any other character data written to DDR is ignored 
(while DSR[15] is zero) 

DSR 

DDR 
15 8 7 0 

15 14 0 

output data 

ready bit 
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Basic Input Routine 

new 
char? 

read 
character 

YES 

NO 

Polling 

POLL   LDI  R0, KBSRPtr 
  BRzp POLL 
  LDI  R0, KBDRPtr 

  ... 

KBSRPtr .FILL xFE00 
KBDRPtr .FILL xFE02 
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Basic Output Routine 

screen 
ready? 

write 
character 

YES 

NO 

Polling 

POLL  LDI  R1, DSRPtr 
 BRzp POLL 
 STI  R0, DDRPtr 

 ... 

DSRPtr .FILL xFE04 
DDRPtr .FILL xFE06 

8-140 

Simple Implementation: Memory-Mapped Input 

Address Control Logic 
determines whether  
MDR is loaded from  
Memory or from KBSR/KBDR. 
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Simple Implementation: Memory-Mapped Output 

Sets LD.DDR 
or selects  
DSR as input. 
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Keyboard Echo Routine 

Usually, input character is also printed to screen. 
! User gets feedback on character typed 

and knows its ok to type the next character. 

 
new 
char? 

read 
character 

YES 

NO 

screen 
ready? 

write 
character 

YES 

NO 

POLL1  LDI  R0, KBSRPtr 
 BRzp POLL1 
 LDI  R0, KBDRPtr 

POLL2  LDI  R1, DSRPtr 
 BRzp POLL2 
 STI  R0, DDRPtr 

 ... 

KBSRPtr .FILL xFE00 
KBDRPtr .FILL xFE02 
DSRPtr  .FILL xFE04 
DDRPtr  .FILL xFE06 
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Interrupt-Driven I/O 

External device can: 
(1)  Force currently executing program to stop; 

(2) Have the processor satisfy the device’s needs; and 

(3) Resume the stopped program as if nothing happened. 

 

Why? 
!  Polling consumes a lot of cycles, 

especially for rare events – these cycles can be used 
for more computation. 

!  Example: Process previous input while collecting 
current input.  (See Example 8.1 in text.) 
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Interrupt-Driven I/O 

To implement an interrupt mechanism, we need: 
! A way for the I/O device to signal the CPU that an 

interesting event has occurred. 

! A way for the CPU to test whether the interrupt signal is set 
and whether its priority is higher than the current program. 

 

Generating Signal 
! Software sets “interrupt enable” bit in device register. 

! When ready bit is set and IE bit is set, interrupt is signaled. 

KBSR 
15 14 0 

ready bit 
13 

interrupt enable bit 

interrupt signal  
to processor 
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Priority 

Every instruction executes at a selected level of urgency. 
LC-3: 8 priority levels (PL0-PL7) 

! Example:  

• Payroll program runs at PL0. 
• Nuclear power correction program runs at PL6. 

 

! It’s OK for PL6 device to interrupt PL0 program, 
but not the other way around. 

 

Priority encoder selects highest-priority device, 
compares to current processor priority level, 
and generates interrupt signal if appropriate. 
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Testing for Interrupt Signal 

CPU looks at signal between STORE and FETCH phases. 
If not set, continues with next instruction. 

If set, transfers control to interrupt service routine. 

EA 

OP 

EX 

S 

F 

D 

interrupt 
signal? 

Transfer to 
ISR 

NO 

YES 

More details in Chapter 10. 
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TRAP Routines and 
Subroutines 
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System Call 

1. User program invokes system call. 
2. Operating system code performs operation. 

3. Returns control to user program. 

In LC-3, this is done through the TRAP mechanism. 
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LC-3 TRAP Mechanism 

1. A set of service routines. 
! part of operating system -- routines start at arbitrary addresses 

(convention is that system code is “below” x3000) 
! up to 256 routines 

2. Table of starting addresses. 
! stored at x0000 through x00FF in memory 
! called System Control Block in some architectures 

3. TRAP instruction. 
! used by program to transfer control to operating system 

! 8-bit trap vector names one of the 256 service routines 

4. A linkage back to the user program. 
! want execution to resume  

immediately after the TRAP instruction 
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TRAP Instruction 

Trap vector 
!  identifies which system call to invoke 

! 8-bit index into table of service routine addresses 

•  in LC-3, this table is stored in memory at 0x0000 – 0x00FF 

• 8-bit trap vector is zero-extended into 16-bit memory address 

 

Where to go 
!  lookup starting address from table; place in PC 

How to get back 
! save address of next instruction (current PC) in R7 
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TRAP 

NOTE: PC has already been incremented 
during instruction fetch stage. 
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RET (JMP R7) 

How do we transfer control back to 
instruction following the TRAP? 

 

We saved old PC in R7. 

! JMP R7 gets us back to the user program at the right spot. 

! LC-3 assembly language lets us use RET (return) 
in place of “JMP R7”. 

 

Must make sure that service routine does not  
change R7, or we won’t know where to return. 
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TRAP Mechanism Operation 

1.  Lookup starting address. 
2.  Transfer to service routine. 
3.  Return (JMP R7). 
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TRAP 

NOTE: PC has already been incremented 
during instruction fetch stage. 
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Saving and Restoring Registers 

Must save the value of a register if: 
! Its value will be destroyed by service routine, and 

! We will need to use the value after that action. 

 

Who saves? 
! caller of service routine? 

• knows what it needs later, but may not know what gets altered by called 
routine 

! called service routine? 

• knows what it alters, but does not know what will be needed later by 
calling routine 
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Saving and Restoring Registers 

Called routine -- “callee-save” 
! Before start, save any registers that will be altered 

(unless altered value is desired by calling program!) 

! Before return, restore those same registers 

 

Calling routine -- “caller-save” 
! Save registers destroyed by own instructions or 

by called routines (if known), if values needed later 

•  save R7 before TRAP 

•  save R0 before TRAP x23 (input character) 
! Or avoid using those registers altogether 

 

Values are saved by storing them in memory. 
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Subroutines 

A subroutine is a program fragment that: 
!  lives in user space 
! performs a well-defined task 
!  is invoked (called) by another user program 
! returns control to the calling program when finished 

Like a service routine, but not part of the OS 
! not concerned with protecting hardware resources 
! no special privilege required 

 
Reasons for subroutines: 

! reuse useful (and debugged!) code without having to 
keep typing it in 

! divide task among multiple programmers 
! use vendor-supplied library of useful routines 
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JSR Instruction 

Jumps to a location (like a branch but unconditional), 
and saves current PC (addr of next instruction) in R7. 
! saving the return address is called “linking” 

!  target address is PC-relative (PC + Sext(IR[10:0])) 

! bit 11 specifies addressing mode (one opcode, two instructions) 

•  if =1, PC-relative:  target address = PC + Sext(IR[10:0]) 
•  if =0, register: target address = contents of register IR[8:6] 
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JSR 

NOTE: PC has already been incremented 
during instruction fetch stage. 
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JSRR Instruction 

Just like JSR, except Register addressing mode. 
!  target address is Base Register 

! bit 11 specifies addressing mode 

 

What important feature does JSRR provide 
that JSR does not? 
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JSRR 

NOTE: PC has already been incremented 
during instruction fetch stage. 
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Returning from a Subroutine 

RET (JMP R7) gets us back to the calling routine. 
!  just like TRAP 

 

9-165 

Passing Information to/from Subroutines 

Arguments 
! A value passed in to a subroutine is called an argument. 

! This is a value needed by the subroutine to do its job. 

! Examples: 

•  In 2sComp routine, R0 is the number to be negated 

•  In OUT service routine, R0 is the character to be printed. 
•  In PUTS routine, R0 is address of string to be printed. 

Return Values 
! A value passed out of a subroutine is called a return value. 
! This is the value that you called the subroutine to compute. 

! Examples: 

•  In 2sComp routine, negated value is returned in R0. 

•  In GETC service routine, character read from the keyboard 
is returned in R0. 
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Using Subroutines 

In order to use a subroutine, a programmer must know: 
!  its address (or at least a label that will be bound to its address) 

!  its function (what does it do?) 

• NOTE: The programmer does not need to know 
how the subroutine works, but 
what changes are visible in the machine’s state 
after the routine has run. 

!  its arguments (where to pass data in, if any) 

!  its return values (where to get computed data, if any) 
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Saving and Restoring Registers 

Since subroutines are just like service routines, 
we also need to save and restore registers, if needed. 

 

Generally use “callee-save” strategy, 
except for return values. 
! Save anything that the subroutine will alter internally 

that shouldn’t be visible when the subroutine returns. 

! It’s good practice to restore incoming arguments to  
their original values (unless overwritten by return value). 

 

Remember: You MUST save R7 if you call any other 
subroutine or service routine (TRAP). 
! Otherwise, you won’t be able to return to caller. 
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Stack: An Abstract Data Type 

An important abstraction that you will encounter 
in many applications. 

 

We will describe Interrupt-Driven I/O 
! The rest of the story… 

10-171 

Stack: An Abstract Data Type 

An important abstraction that you will encounter 
in many applications. 

 

We will describe three uses: 

Interrupt-Driven I/O 
! The rest of the story… 

Evaluating arithmetic expressions 
! Store intermediate results on stack instead of in registers 

Data type conversion 
! 2’s comp binary to ASCII strings 
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Stacks 

A LIFO (last-in first-out) storage structure. 
! The first thing you put in is the last thing you take out. 

! The last thing you put in is the first thing you take out. 

 

This means of access is what defines a stack, 
not the specific implementation. 

 

Two main operations: 

 PUSH: add an item to the stack 

 POP: remove an item from the stack 
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A Software Implementation 

Data items don't move in memory,  
just our idea about there the TOP of the stack is. 

/ / / / / / 
/ / / / / / 
/ / / / / / 
/ / / / / / 
/ / / / / / TOP 

/ / / / / / 
/ / / / / / 
/ / / / / / 

#18 
/ / / / / / 

TOP 

#12 
#5 
#31 
#18 

/ / / / / / 

TOP #12 
#5 

#31 
#18 

/ / / / / / 

TOP 

Initial State After 
One Push 

After Three  
More Pushes 

After 
Two Pops 

x4000 x3FFF x3FFC x3FFE R6 R6 R6 R6 

By convention, R6 holds the Top of Stack (TOS) pointer. 

“High memory” 
(large address) 

“Low memory” 
(small address) 
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Basic Push and Pop Code 

For our implementation, stack grows downward 
(when item added, TOS moves closer to 0) 

 

Push 
  ADD  R6, R6, #-1 ; decrement stack ptr 

 STR  R0, R6, #0  ; store data (R0) 

 

 

Pop 
  LDR  R0, R6, #0  ; load data from TOS 
  ADD  R6, R6, #1  ; decrement stack ptr 

Preview of C: Stack Frames 

Major support issues posed by subroutines 
•  Linkage (how to get there and back) 

•  Passing parameters (where are they) 

•  Providing storage for local use (finding unique space for each invocation) 

An activation record is a memory template of fixed size, allocated 
atomically as part of invoking a subroutine 
•  It allocates space to save parameters 
•  It provides storage for variables defined in the subroutine 

•  It provides a place for saving the return path. 

A stack of activation records is an efficient way to address all three 
issues 
 

By convention, register R6 is used as the stack frame pointer. 
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Interrupt-Driven I/O (Part 2) 

Interrupts were introduced in Chapter 8. 
1.  External device signals need to be serviced. 

2.  Processor saves state and starts service routine. 

3.  When finished, processor restores state and resumes program. 

 

 

 

 

Chapter 8 didn’t explain how (2) and (3) occur, 
because it involves a stack. 

 

Now, we’re ready… 

Interrupt is an unscripted subroutine call, 
triggered by an external event. 
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Processor State 

What state is needed to completely capture the 
state of a running process? 

Processor Status Register 
!  Privilege [15], Priority Level [10:8], Condition Codes [2:0] 

 

 

Program Counter 
! Pointer to next instruction to be executed. 

 

Registers 
! All temporary state of the process that’s not stored in memory. 
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Where to Save Processor State? 

Can’t use registers. 
! Programmer doesn’t know when interrupt might occur, 

so she can’t prepare by saving critical registers. 

! When resuming, need to restore state exactly as it was. 
 

Memory allocated by service routine? 
! Must save state before invoking routine, 

so we wouldn’t know where. 

! Also, interrupts may be nested –  
that is, an interrupt service routine might also get interrupted! 

 

Use a stack! 
! Location of stack “hard-wired”. 

! Push state to save, pop to restore. 
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Supervisor Stack 

A special region of memory used as the stack 
for interrupt service routines. 
! Initial Supervisor Stack Pointer (SSP) stored in Saved.SSP. 

! Another register for storing User Stack Pointer (USP): 
Saved.USP. 

 

Want to use R6 as stack pointer. 
! So that our PUSH/POP routines still work. 

 

When switching from User mode to Supervisor mode 
(as result of interrupt), save R6 to Saved.USP. 
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Invoking the Service Routine – The Details 

1.  If Priv = 1 (user),  
Saved.USP " R6, then R6 " Saved.SSP. 

2.  Push PSR and PC to Supervisor Stack. 
3.  Set PSR[15] = 0 (supervisor mode). 

4.  Set PSR[10:8] = priority of interrupt being serviced. 

5.  Set PSR[2:0] = 0.  [?] 

6.  Set MAR = x01vv, where vv = 8-bit interrupt vector 
provided by interrupting device (e.g., keyboard = x80). 

7.  Load memory location (M[x01vv]) into MDR. 
8.  Set PC = MDR; now first instruction of ISR will be fetched. 

 

Note: This all happens between  
the STORE RESULT of the last user instruction and 
the FETCH of the first ISR instruction. 
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Returning from Interrupt 

Special instruction – RTI – that restores state. 
 
 

1.  Pop PC from supervisor stack.  (PC = M[R6]; R6 = R6 + 1) 
2.  Pop PSR from supervisor stack.  (PSR = M[R6]; R6 = R6 + 1) 

3.  If PSR[15] = 1, R6 = Saved.USP. 
(If going back to user mode, need to restore User Stack Pointer.) 

 

 

RTI is a privileged instruction. 
!  Can only be executed in Supervisor Mode. 

!  If executed in User Mode, causes an exception. 
(More about that later.) 
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Example (1) 

/ / / / / / 
/ / / / / / 
/ / / / / / 
/ / / / / / 
/ / / / / / 

x3006 PC 

Program A 

ADD x3006 

Executing ADD at location x3006 when Device B interrupts. 

Saved.SSP 
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Example (2) 

/ / / / / / 

x3007 
PSR for A 

/ / / / / / 

/ / / / / / 

x6200 PC 

R6 

Program A 

ADD x3006 

Saved.USP = R6.  R6 = Saved.SSP. 
Push PSR and PC onto stack, then transfer to 
Device B service routine (at x6200). 

x6200 

ISR for 
Device B 

x6210 RTI 
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Example (3) 

/ / / / / / 

x3007 
PSR for A 

/ / / / / / 

/ / / / / / 

x6203 PC 

R6 

Program A 

ADD x3006 

Executing AND at x6202 when Device C interrupts. 

x6200 

ISR for 
Device B 

AND x6202 

x6210 RTI 
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Example (4) 

/ / / / / / 

x3007 
PSR for A 

x6203 
PSR for B 

x6300 PC 

R6 

Program A 

ADD x3006 

x6200 

ISR for 
Device B 

AND x6202 

ISR for 
Device C 

Push PSR and PC onto stack, then transfer to 
Device C service routine (at x6300). 

x6300 

x6315 RTI 

x6210 RTI 
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Example (5) 

/ / / / / / 

x3007 
PSR for A 

x6203 
PSR for B 

x6203 PC 

R6 

Program A 

ADD x3006 

x6200 

ISR for 
Device B 

AND x6202 

ISR for 
Device C 

Execute RTI at x6315; pop PC and PSR from stack. 

x6300 

x6315 RTI 

x6210 RTI 
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Example (6) 

/ / / / / / 

x3007 
PSR for A 

x6203 
PSR for B 

x3007 PC 

Program A 

ADD x3006 

x6200 

ISR for 
Device B 

AND x6202 

ISR for 
Device C 

Execute RTI at x6210; pop PSR and PC from stack. 
Restore R6.  Continue Program A as if nothing happened. 

x6300 

x6315 RTI 

x6210 RTI 

Saved.SSP 
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Exception: Internal Interrupt 

When something unexpected happens 
inside the processor, it may cause an exception. 

 

Examples: 
! Privileged operation (e.g., RTI in user mode) 

! Executing an illegal opcode 

! Divide by zero (or other forms of overflow) 

! Accessing an illegal address (e.g., protected system memory) 

 

Handled just like an interrupt 
! Vector is determined internally by type of exception 
! Priority is the same as running program 


