Exercises

Imagine you have taken a picture with a 4 megapixel digital camera. For ease of calculation, assume that the picture is square, not rectangular.

4 million pixels

Assume that you are printing this picture out on a printer that has approximately 4000 dots per inch.
A) How many inches across would the picture be when it was printed?

- 4,000,000 = 2000 * 2000

Therefore the picture would take up 0.5 by 0.5 inches.
B) If you viewed this image on a screen that had 1000 dots across, what portion of the image would be visible?

- You would see $1 / 2$ the width and $1 / 2$ the height.
- Therefore you would see: $1 / 2 * 1 / 2=1 / 4$ of the image

Exercises

- How many colours can be represented by 3 bits?
- $2^{3}=8$ colours
- How many bits are required to represent 128 different colours?
- $128=2^{7}$. Therefore 7 bits are required.
- How much memory would be required to store a black and white image that is 10 pixels high and 5 pixels wide? Show your working.
- Number of colours $=2^{1}$. Therefore 1 bit is required per pixel. Number of pixels $=\mathrm{h} * \mathrm{w}=10$ * $5=50$ Memory needed $=50$ * $1=50$ bits

Exercises

- How much memory (in bytes) would be required to store an image that has 256 different colours and is 3 pixels high and 5 pixels wide? Show your working.
- Number of colours $=256=2^{8}$. Therefore 8 bits or 1 byte are required per pixel.
Number of pixels $=h * w=3 * 5=15$
Memory needed $=15$ * $1=15$ bytes

