Exercises

The following two questions relate to dials that have 10 different states, as discussed in the previous slide.

Given a machine that uses 4 dials, how many different numbers can we represent?

10000

- If we want to represent 256 different values, how many dials do we need?

3 dials

Exercises

How many different values can we represent with a byte?

256

- If we want to represent 30 different values, how many bits would we need?

5 bits

Exercises

What is the decimal equivalent of 101111 ?

$$
47
$$

What is the binary equivalent of 123 ?

1111011

Exercises

Which has more bytes, 1 KB or 1 KiB ?
$1 K B=1000$ bytes while $1 \mathrm{KiB}=1024$ bytes

How many bytes are in 128MB?
$128 \times 10^{6}=128,000,000$ bytes

Exercises

Which of the following sequences is arranged in descending order of memory capacity (i.e. from the largest memory capacity to the smallest)?
a) $1 \mathrm{MB}, 1 \mathrm{~GB}, 1 \mathrm{GiB}, 1 \mathrm{~TB}, 1 \mathrm{TiB}$
b) $1 \mathrm{~GB}, 1 \mathrm{GiB}, 1 \mathrm{~TB}, 1 \mathrm{TiB}, 1 \mathrm{MB}$
c) $1 \mathrm{~TB}, 1 \mathrm{TiB}, 1 \mathrm{~GB}, 1 \mathrm{GiB}, 1 \mathrm{MB}$
d) $1 \mathrm{TiB}, 1 \mathrm{~TB}, 1 \mathrm{GiB}, 1 \mathrm{~GB}, 1 \mathrm{MB}$
e) $1 \mathrm{MB}, 1 \mathrm{GiB}, 1 \mathrm{~GB}, 1 \mathrm{TiB}, 1 \mathrm{~TB}$

