Python 3 - Turtle graphics

Lecture 18 - COMPSCI111/111G S2 2019

Today's lecture

- The Turtle graphics package
- Brief history
- Basic commands
- Drawing shapes on screen

The Turtle package

- Some functions are part of Python's core libraries, in other words they are 'built-in'
, print()
, input()
, float()
- Other functions need to be imported into your Python program
- The turtle module needs to be imported at the start of any Python program that uses it: import turtle
- In 1967, Seymour Papert and Wally Feurzeig created an interpretive programming language called Logo.
- Papert added commands to Logo so that he could control a turtle robot, which drew shaped on paper, from his computer
- Turtle graphics is now part of Python.
- With the Turtle graphics package, you can use commands to control a virtual turtle turtle to move on the screen and draw lines to create shapes.

Basic Turtle commands

- There are four basic turtle commands
, turtle.forward(x)
- Moves turtle forward in direction it is facing by x steps
- turtle.back(x)
- Moves turtle backward from its facing direction by x steps
- turtle.left(x)
- Turns the turtle x degrees counterclockwise
- turtle.right(x)
- Turns the turtle x degrees clockwise

Turtle example

- Using the Python interpreter in IDLE to demonstrate how to use Turtle graphics
- First, import the turtle package

Turtle example

- We are going to draw a right-angled triangle

- Important information:
- The turtle appears as an icon
- Initial position: $(0,0)$
- Initial direction: East $\left(0^{\circ}\right)$
, Colour: black
- Line width: I pixel
- Pen: down (ready to draw)

829 Algorithm

Turn 90 degrees left (anti-clockwise)

draw a line

Turn I 35 degrees left (anti-clockwise)

- Step I: Draw a line

Turtle example

Initial direction: 0

- Note how the turtle is now facing upward after being turned 90 degrees left

```
    Python Shell
File Edit Shell Debug Options Windows Help
    >>> import turtle
>>>
>>> turtle.forward(200)
>>> turtle.left(90)
>>>
```


Turtle example

- Step 3: draw a line

- Step 4: turn I35 degree left (anti-clockwise)

- Working out the length of the longest side using the Pythagoras' formula

73 Python Shell		- 미ㅈㅡㅏ
Eile Edit shell Debug Options Windows Help		
>>> import turtle		
>>>		
\ggg turtle.forward(200)		
>>> turtle.left(90)		
>>> turtle.forward(200)		
>>> turtle.left(135)		
$\ggg \mathrm{c}=((200 * * 2)+(200 * * 2))^{* *} 0.5$	\#around 283	steps
		Ln: 12 C

Turtle example

- Step 6: draw a line
- The finished image

```
*Python Shell
File Edit Shell Debug Options Windows Help
    >>> import turtle
    >>>
    >>> turtle.forward(200)
    >>> turtle.left(90)
    >>> turtle.forward(200)
    >>> turtle.left(135)
    >> c = ((200**2)+(200**2))**0.5)
    >>> turtle.forward(c)
```

- We can use loops when drawing shapes using Turtle graphics
- Write a program that will draw a square using a loop

Turn 90
degree left \quad X 4 times

Turtle example

- We can use loops when drawing shapes using Turtle graphics
- Write a program that will draw a square using a loop
import turtle
count = 0
while count < 4:
turtle.forward(200)
turtle.left(90)
count $=$ count +1

Exercise 1

TRY IT OUT!

- Write a Python program that draws a rectangle. The long sides must be 300 steps long and the short sides must be 150 steps long

- Write a program that will draw a circle
- Python Turtle Graphics

- Steps:

- Draw a short line (2 pixels)

p Turn I degree
- Repeat the above steps 360 times
- Write a program that will draw a circle
count = 0
while(count < 360): turtle.forward(2) turtle.left(1) count = count + 1 print("Finished!")

Question

- Consider the following program: import turtle
count = 0
length = 100
while count < 4:
length = length - 10

- Which of the following pictures demonstrates the output generated by the program above?

Exercise 2

- How to draw a star?
- How many steps do you need?
* What is the size/length for each step? E.g. 400 pixels
- What is the turning angle for each step?

- Draw the shape that is produced by the following Python program: import turtle
count = 0
while(count < 180):
turtle.forward(2)
turtle.right(1)
count $=$ count +1
turtle.right(45)
turtle.forward(300)
turtle.left(90)
turtle.back(150)
turtle.right(45)
turtle.back(250)

Exercise 4

- Draw the shape that is produced by the following Python program:

```
import turtle
big_line = 100
little_line = 50
angle = 90
turtle.left(angle)
turtle.forward(big_line)
count = 0
while count < 4:
    turtle.right(angle//2)
    if count != 3:
        turtle.forward(little_line)
        else:
            turtle.forward(big_line)
        count = count + 1
    turtle.right(90)
23 turtle.forward(130)
```


Summary

- The Turtle package must be imported into every Python program that uses it
- The Turtle has four basic commands; forward, back, left and right

