Spreadsheets

Lecture 11 - COMPSCI 111/ 111G S2 2020

"Autosum aside, these numbers just don't add up."

The 1st Killer App. VisiCalc

- The idea for the electronic spreadsheet came to me while I was a student at the Harvard Business School, working on my MBA degree, in the spring of 1978. Sitting in Aldrich Hall, room 108, I would daydream. "Imagine if my calculator had a ball in its back, like a mouse..." (I had seen a mouse previously, I think in a demonstration at a conference by Doug Engelbart, and maybe the Alto).
- And "..imagine if I had a heads-up display, like in a fighter plane, where I could see the virtual image hanging in the air in front of me. I could just move my mouse/ keyboard calculator around, punch in a few numbers, circle them to get a sum, do some calculations, and answer ' 10% will be fine! "' (10% was always the answer in those days when we couldn't do very complicated calculations...)
www. bricklin.com/ history/ intro.htm

Development

- Background
- Dan Bricklin and Bob Frankston
- VisiCalc released in 1979.

Design

- Visible Calculator
- Organize calculations as we would on paper - in columns and rows.
- Supports automatic updating of calculations.
- Copy formulas so we may apply these to large amounts of data.

Microsoft Excel - Overview

- Used to represent a table of data
- Rows (labelled with numbers)
- Columns (labelled with letters)
- Cells

http:// en.wikipedia.org/ wiki/ Microsoft_Excel

Changing appearance of cells

- Alter Size
- Click on cell separator and drag
- Add Borders
- Format Cell
- Add Shading
- Format Cell
- Font
- Style
- Size
- Alignment
- Numbers

- Decimal points

Entering Data

- Cells contain
- Text
- Numbers
- Formulae (start with " =")
- Entry box

- Type data in entry box
- Hit Enter key to accept value
- All formulae are calculated
- Results shown in each cell

Formulae

- Entering formulae
- Always begin with an equals sign
- Calculation typed into cell/ entry box
- Result displayed in the cell
- Formula displayed in the entry box

Using Cell References

- Cell Reference
- Formulae refer to other cells
- Specify cell location using Row and Column IDs

D5		- \quad -	$\times \quad \checkmark$	f_{x}	= $\mathrm{B} 5+\mathrm{C} 5$	
4	A	B	c	D		E
1						
2		Hours Worked				
3						
4	Name	Monday	Tuesday	Total		
5	Paul	24	12		36	
6	Sebastian	4	20			
7	Stefan	1	5			
8	Ali	2	11			

Filling Down and Filling Right

- Save time
- Fill many cells with same contents
- Select a group of cells
- Fill Right
- Fill Down

Fill right

Filling Cells with Formulae

- Use Fill Down/ Fill Right on formulae
- Saves us entering new formula for each row

D5		\checkmark	$\times \checkmark$	$\boldsymbol{f}_{\boldsymbol{x}}$	= $\mathrm{B} 5+\mathrm{C} 5$	
4	A	B	C	D		E
1						
2		Hours Wo	orked			
3						
4	Name	Monday	Tuesday	Total		
5	Paul	24	12		36	
6	Sebastian	4	20			
7	Stefan	1	5			
8	Ali	2	11			

- D5 should contain =B5 +C5
- D6 should contain =B6 +C6
- D7 should contain =B7 +C7
- D8 should contain =B8 +C8

Relative References

- Cell reference in formula
- Use same formula, different cell references
- Cell reference is relative to position of formula
- Spreadsheets adjust formula automatically during fill operation

Absolute references

- Absolute references
- Sometimes the cell reference should not change
- Eg. for constants
- Use a dollar sign \$ before the row or column

E7			$\times \quad$	$=D 7^{*}$ \$B\$4		
4	A	B	C	D	E	
1						
2		Hours Worked				
3						
4	Pay rate:	12				
5						
6	Name	Monday	Tuesday	Total	Total Pay	
7	Paul	24	12	36	432	- $07 \times$ ¢
8	Sebastian	4	20	24	288	
9	Stefan	1	5	6	72	
10	Ali	2	11	13	156	

Exercises

Exercise 1: Is the reference to cell D6 in the formula =\$D\$6*2 a

 relative or an absolute reference?Imagine that you are keeping track of the sales for tickets at the Olympic games. A number of different sports are located in different venues. Each venue has a number of seats available. Your spreadsheet will keep track of the number of tickets available and the number actually sold.

Exercise 2: Given the following spreadsheet, what formula would you use in cell D6 to calculate the number of tickets remaining?

4	A	B	C	D
1		Ticket Sales		
2				
3	Price	$\$ 10.00$		
4				
5	Event	Tickets Available	Tickets Sold	Remaining
6	Cycling	4000	2000	2000
7	Weightlifting	2000	750	1250
8	Triathlon	1000	100	900
9	Football	3000	3000	0
10	Badminton	5000	4500	500
11		15000	10350	4650

Exercises

Exercise 3: What formula would you use in cell E8 to calculate the money made from ticket sales?

-	A	B	C	D	E
1	Ticket Sales				
2					
3	Price	\$10.00			
4					
5	Event	Tickets Available	Tickets Sold	Remaining	Sales
6	Cycling	4000	2000	2000	\$20,000.00
7	Weightlifting	2000	750	1250	\$7,500.00
8	Triathlon	1000	100	900	\$1,000.00
9	Football	3000	3000	0	\$30,000.00
10	Badminton	5000	4500	500	\$45,000.00

\square
Exercise 4: What formula would you use in cell B11 to calculate the total number of tickets available?

4	A	B	C	D	E
1		Ticket Sales			
2					
3	Price	$\$ 10.00$			
4					
5	Event	Tickets Available	Tickets Sold	Remaining	Sales
6	Cycling	4000	2000	2000	$\$ 20,000.00$
7	Weightlifting	2000	750	1250	$\$ 7,500.00$
8	Triathlon	1000	100	900	$\$ 1,000.00$
9	Football	3000	3000	0	$\$ 30,000.00$
10	Badminton	5000	4500	500	$\$ 45,000.00$
11		15000	10350	4650	$\$ 103,500.00$

(

Functions

- Many functions exist
- Allow us to make more complicated formulae
- Examples
- SUM
- MAX
- MIN
- AVERAGE
- Specifying a range of cells
- Top Left cell
- Bottom Right cell

- B6:C10

Using built-in functions

- Insert a Function

- Many categories
- Help is useful

Functions

- Format of Excel functions:
=nameOfFunction(comma separated list of parameters)
- Examples:
$=\operatorname{SUM}(5,6,7)$
=AVERAGE(A2: D2)

Boolean Logic

- Boolean value
- True or False
- 2 -valued logic
- Compare two different values
> $=$
\gg
$><$
- >=
- $<=$
- Example. Are the following true or false?
- $=(3=4)$
- $=(4<6)$
- $=(\operatorname{MAX}(5,6)=5)$
$>=(\operatorname{SUM}(1,2,3)=6)$

Boolean Functions

- AND (a, b)
- True only when a and b are both true
- $O R(a, b)$
- True if either a is true or b is true
- NOT(a)
- True only when a is false
- Are the following formulae TRUE or FALSE?
- $=\operatorname{AND}(3=4,2=2)$
- $=O R(7<5,3>3)$
- $=\operatorname{NOT}(3=2)$
$\Rightarrow=\operatorname{OR}(\operatorname{AND}(2=3,4>3), \operatorname{NOT}(2=3))$

IF functions

- Makes a decision
- Different values used in the cell depending on the logical test
- IF(logical_test, value_if_true, value_if_false)

Must be either true or false

- value
- condition (test)
- boolean function

This value appears in the cell if the boolean is true

This value appears in the cell if the boolean is false

