
COMPSCI 111 / 111G
Mastering Cyberspace:

An Introduction to Practical Computing

Introduction to Programming and Python

10/3/14 2COMPSCI 111/111G - Python 01

Routine Activities

We spend much of our time engaging in routine activities:

We may value novelty, but familiar routines make our life
much simpler than it would be without them.

• Morning activities like taking a shower and getting dressed
• Getting to the university or work and returning home

• Organizing and holding a party for our friends

• Driving or flying to visit our parents or siblings
• Having lunch or dinner at a restaurant or fast food outlet

10/3/14 3COMPSCI 111/111G - Python 01

Familiar Automated Routines

We rely on devices for many routine activities, including:

These artifacts store and execute routines so we do not
have to carry them out ourselves.

• Alarm clocks or cell phones to wake up in the morning

• Microwave ovens to cook or reheat our meals

• Tivo boxes to record our favorite TV programs
• Thermostats to control air conditioners and heaters

• Washers and dryers to clean and dry our clothes

• iPods to play the songs or lectures we want to hear

10/3/14 4COMPSCI 111/111G - Python 01

Stored Programs

How do our digital devices know how to carry out such
routine activities?

This notion of a stored program is one of the basic insights
that underlies computing and information technology.

This concept is also central to all computational theories of
human thinking and intelligence.

• Basic idea: We can store the steps in a routine activity in
memory in ways that a computer can execute.



10/3/14 5COMPSCI 111/111G - Python 01

Storing and Interpreting Programs

We need two things to allow routine activity on a computer:

These ideas apply not only to routine behavior on silicon
devices, but also to our own everyday activities.

• Encode and store the program in memory:
– Giving the program a name or index so we can access it;
– Specifying the program’s initial, intermediate, final steps.

• Access and run the program on demand:
– Retrieving the program by its name or index;
– Passing any arguments to the program;
– Executing each of the program’s steps in turn; and
– Halting the program and returning any results.

10/3/14 6COMPSCI 111/111G - Python 01

Recipe for Jamaican Curry Chicken

1. Wash chicken with lemon and cut into bite-sized pieces.
2. Season with all dry ingredients.
3. Chop all herbs and add to chicken (use hands to rub in

seasonings, and let sit in refrigerator for 1/2 hr.).
4. Place chicken, water, and oil in a pot, stir, cook on high until it

comes to a boil, stir, lower heat until chicken is almost cooked.
5. Add potatoes and butter.
6. Cook until water is reduced and potatoes are tender.
7. Serve over steamed white rice.

Ingredients: 1/2 chicken, 4 stems thyme, 1 onion, 5 tbsp. curry,
2 cloves garlic, 3 tbsp. seasoning, 3 tbsp. black pepper, 1 tbsp.
chicken seasoning, 3 cubed potatoes,1 lemon,1 tbsp. vegetable
oil, 2 tbsp. butter, 2 c. water, 1/2 Scotch bonnet pepper

10/3/14 7COMPSCI 111/111G - Python 01

Music Boxes as Stored Programs

Music boxes use a revolving cylinder with adjustable pins that
hit the tuned teeth of a steel comb.

The adjustable pins are a stored program. This idea goes back
at least to Nicholas Vallin’s 1598 musical wall clock.

10/3/14 8COMPSCI 111/111G - Python 01

The Jacquard Loom

Around 1800, Joseph-Marie Jacquard first introduced punched
cards to control a loom for weaving silk cloth.

Each card specified one row in the design; a linked chain of such
cards was a stored program for weaving a pattern.



10/3/14 9COMPSCI 111/111G - Python 01

Stored Programs in Player Pianos

In 1863, Forneaux reported the first practical self-playing piano,
which used a perforated cardboard book to control the keys.

Later player pianos used paper rolls to describe a song’s notes;
these replaceable rolls were stored programs.

10/3/14 10COMPSCI 111/111G - Python 01

Hollerith’s Tabulator

Herman Hollerith developed a mechanical tabulator, driven by
punched cards, to process the 1890 US Census.

Unlike earlier stored programs, these supported not some routine
physical activity but rather routine calculation.

10/3/14 11COMPSCI 111/111G - Python 01

History of Stored Programs

Stored programs have a diverse and illustrious history:

Computer programming builds on these varied innovations..

• Joseph-Marie Jacquard (~1800) introduces punched cards to
control a loom for weaving silk cloth.

• Herman Hollerith (~1890) uses punched cards for tabulating
data from the US Census.

• Alan Turing (1937) introduces the idea of a machine that can
store and interpret a program as data in memory.

• William Mauchly and J. P. Eckert (~1946) design the first
stored-program digital computer.

• First commercial programmable computer (UNIVAC 1) goes
on the market (1951).

10/3/14 12COMPSCI 111/111G - Python 01

Media for Stored Programs

Note that the media used for stored programs has evolved
over time:

Note that we can store the same program – instructions for
the same routine behavior – on very different media.

This suggests that programs exist at a level of abstraction
that is independent of their physical encoding.

• Metal cylinders for music players
• Wooden cards for looms and paper rolls for pianos
• Punched paper cards for tabulating machines
• Magnetic drums for early digital computers
• Semiconductor memory for later digital computers



Programming Languages

Any stored program must be stated in some language.

Since computers cannot yet   understand natural languages,
we require something more formal and less ambiguous.

A programming language is a formal notation that lets us
tell computers how to carry out routine activities.

There are many programming languages, some of them in
existence since the 1950s:
– Fortran, Algol, Basic, Visual Basic

– C, C++, C#, Java
– Lisp, Prolog, OPS … and many, many others

This course will focus on Python, a fairly recent language.

10/3/14 13COMPSCI 111/111G - Python 01 10/3/14 14COMPSCI 111/111G - Python 01

Programs as Ordered Statements

A stored program for carrying out a routine activity has:

We often refer to each step in a program as a statement.

Thus, the body of a program consists of a sequence of
statements, much as in a recipe.

• A name by which one can access the program.
• A set of inputs or arguments on which it operates.
• Initialization steps that get the program ready.
• A list of operations that must occur in sequence.
• Halting steps that end the program and return results.

10/3/14 15COMPSCI 111/111G - Python 01

Ordered Statements: Python Example

Here is a simple Python program that has ordered steps.

You can ignore the details for now; we will talk about what
each step means later, in another lecture.

The important point is that you can specify steps in the
order you want Python to carry them out.

number = 1
while number < 11:    
    answer = number * 9    
    print("9 x",number,"=",answer)
    number = number + 1

First step

Second step

10/3/14 16COMPSCI 111/111G - Python 01

Building Blocks of Programs

Any programming language must make a commitment to
three building blocks that make up programs:

• Types of data over which programs operate;

• Primitive operations that inspect / manipulate those data;

• A syntax for combining these operations into programs.

Different languages make different commitments about
each of these design decisions.

We will consider Python’s position on each dimension.



10/3/14 17COMPSCI 111/111G - Python 01

Our example Python program also illustrates data types,
primitive operations, and syntax for combining them.

Python uses reserved terms like ‘while’ and indentation to
specify how to combine operations and data.

number = 1
while number < 11:    
    answer = number * 9    
    print("9 x",number,"=",answer)
    number =  number + 1

Primitive
operations

Data types

Building Blocks: Python Example Data Types in Python

Python programs operate on data that comes in different forms:

• Integers
– Numbers without a decimal point
– E.g., –100, 0, 45

• Floating-point numbers
– Numbers with a decimal point
– E.g., –1.00002, 0.0, 4.5, 45.0

• Strings
– Sequence of characters in text (ASCII or Unicode)
– Enclosed in quotation marks
– E.g., "Hello", "Goodbye", "the dog barked"

• Lists and list structures
– Ordered sets of elements
– E.g., ["the", "dog", "barked"], [[1, 2], [3, [4, 5]]]

10/3/14 18COMPSCI 111/111G - Python 01

Python includes a number of built-in functions for making
numeric calculations:
• Adding (+) and multiplying (*) two numbers:
• 5 + 3 => 8 , 5 * 3 => 15

• Subtracting (-) and dividing ( / ) two numbers:
• 5 - 3 => 2 , 5 / 3 => 1.6666666666666667

• Integer division ( // ) and remainder (%) for two numbers:
• 5 // 2 => 2 , 5 % 2 => 1

• Exponentiation (**) of one number by another:
• 5 ** 3 => 125

One can combine such expressions using standard rules of
precedence [e.g., 1 + 2 * 3 => 7 , (1 + 2) * 3 => 9 ].

10/3/14 19COMPSCI 111/111G - Python 01

Arithmetic Operators in Python  String/List Operators in Python

Python also includes built-in functions for operating over
strings and lists, such as those for:
• Concatenating two strings (+)
• "The" + " " + "dog" => "The dog"

• Repeating a given string (*) multiple times
• "Hear Ye " * 3 => "Hear Ye Hear Ye Hear Ye "

• Concatenating two lists (+)
• [1, 2, 3] + [4, 5] => [1, 2, 3, 4, 5]

• Repeating a given list (*) multiple times
• E.g., ["a", "b"] * 2 => ["a", "b", "a", "b"]

Other operators are available for manipulating, inspecting,
and extracting content from data of both types.

10/3/14 20COMPSCI 111/111G - Python 01



Compilers and Interpreters

Early programming languages were low level and easy for
digital machines to interpret, but difficult for humans.
More recent languages have been high level and better for
humans, but must be translated into lower-level ones.
Computer science has explored two general approaches:
– Program compilers that translate an entire file at once into a

language that the computer CPU can process.
– Program interpreters that translate one statement at a time,

running the code as it is converted.

Compilation often produces more efficient programs, but
interpreters support more interaction and debugging.
Python is an interpretive programming language.

10/3/14 21COMPSCI 111/111G - Python 01

Interactive Execution in Python

IDLE is an integrated development environment for Python
that incorporates:

– A text editor for entering statements
– An interpreter to execute these statements

10/3/14 22COMPSCI 111/111G - Python 01

Running Python Code

Python offers users two ways to create and run programs:

• Interactive execution
– Type a statement directly at the prompt
– Python executes statement when you hit <Enter>
– Useful for experimentation
– Good for learning the language

• Defining and using stored programs
– Type a sequence of statements into a file
– Save the file with the file extension .py
– Load the file using import function or run in IDLE
– Call the program under the desired conditions

10/3/14 23COMPSCI 111/111G - Python 01

Interactive Execution in Python

You can enter a statement directly into IDLE and Python
will return the value it produces.

Here are some examples of primitive arithmetic operations,
along with one instance of combining them.

10/3/14 24COMPSCI 111/111G - Python 01

>>> 4 + 3
7
>>> 4 - 3
1
>>> 4 * 3
12
>>> 4 ** 3
64
>>> 4 / 3
1.3333333333333333
>>> 4 // 3
1
>>> (4 + 3) * 2 - 1
13



Interactive Execution in Python

You can also enter statements into IDLE that use string
and list operators, and Python will return their values.

Here are examples of string and list operations, including
some complex statements.

10/3/14 25COMPSCI 111/111G - Python 01

>>> "Hear" + " " + "Ye "
'Hear Ye '
>>> "Hear Ye " * 3
'Hear Ye Hear Ye Hear Ye '
>>> "Hear" + " " + "Ye " * 2
'Hear Ye Ye '
>>> ("Hear" + " " + "Ye ") * 2
'Hear Ye Hear Ye '
>>> ([1, 2, 3] + [4, 5]) * 3
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> 

Review of Key Ideas

• Underlies all of modern computing and information technology

– But has a long history that goes back to at least 1598
• Lets us automate complex but routine activities on computers

– But also accounts for routine human behavior

• Can be implemented in many programming languages
– But one need not master them to appreciate the key ideas

The idea of a stored program is a powerful innovation that:

We rely increasingly on programs stored in digital devices,
but we have always used them to carry out routine tasks.

10/3/14 26COMPSCI 111/111G - Python 01

Review of Key Ideas

• Specifying the name and arguments of a program
• Initialization, sequential, and halting steps for the activity

• Describe steps as combinations of primitive operations on
alternative data types using an unambiguous syntax

• Run the stored program by translating its steps into lower-level
instructions using a compiler or interpreter

A programming language lets us specify routine activity by:

Python is a recent but popular interpretive language with a
simple syntax that is easy to use.
You will learn how to create, store, load, and run Python
programs in your laboratory exercises.

10/3/14 27COMPSCI 111/111G - Python 01


