“Since we got it, he hasn’t moved from that spot for eleven straight days. Oddly enough they call this ‘getting up and running’ on the internet.”
Today’s lecture

- How the Internet works
- Network protocols
What’s the Internet?

- millions of connected computing devices:
 - hosts = end systems
 - running network apps

- communication links
 - fiber, copper, radio, satellite
 - transmission rate: bandwidth

- Packet switches: forward packets (chunks of data)
 - routers and switches
Packet-switching network

- Data is broken into **packets**, which are then sent on the best route in the network.
- Each node on the route sends the packet onto its next destination, avoiding congested or broken nodes.

The original message is **Green, Blue, Red**.
How the Internet works

- Networking hardware
- Protocols
- The Internet
- IP addresses and Domain names
- Client and server software
Networking hardware

- **Connection**
 - Wired, eg. Ethernet
 - Wireless, eg. Wi-Fi, cellular

- **Network card**
 - Can be built into the motherboard or an expansion card
 - Some network cards support wired and wireless connections

- **Switch**
 - Used to connect multiple devices to the same network

- **Router**
 - Directs traffic around the network and connects networks together
Networking hardware

- Modem (modulator/demodulator)
 - Responsible for transmitting and receiving data on the physical medium
 - For example, a modem:
 - Modulates data from computer/router onto a phone line
 - Demodulates signals from a phone line and sends to the computer/router

- There are different kinds of modems
 - Dial-up modems up to 56Kbs
 - Broadband (DSL - digital subscriber line) modems between 256Kbs to 20Mbs
Protocol

- Protocol: a standardised method of communication
- Ensures that the sender and receiver can communicate properly
- Protocols define
 - Format
 - Order of messages sent and received among network entities
 - Actions taken on message transmission, receipt
Protocols

- Common Internet protocols:
 - TCP: transports data reliably
 - UDP: transports data faster but less reliably
 - HTTP: used for client/server communication such as transferring web pages

- Many protocols used in networking are defined in a RFC (Request for Comments) document
 - RFC 791: IP
 - RFC 2616: HTTP
IP Address

- Every host on the Internet needs an IP address.

- Version 4
 - 32-bit number
 - Maximum addresses possible 2^{32} (~4.3 billion)

- Version 6
 - 128-bit number

https://www.thegeekstuff.com/2012/01/ip-address-fundamentals/
IP addresses and domain names

- Domain name system (DNS) is used to convert between IP addresses and human-readable text (domain name)

- DNS servers perform the translation between IP address and URL
Client and server software

- **Client software:**
 - Web browsers
 - Email clients:

- **Server software:**
The Internet’s backbone

- High-capacity fibre optic cables laid on land and under the sea
- Owned by companies who rent out capacity on the cables
- They connect countries together to form the global Internet so are extremely important
 - Having multiple backbone cable connections provides extra capacity and redundancy
The Internet’s backbone

Go to www.submarinecablemap.com to see the undersea backbone cables
NZ’s backbone cables
Questions

- What network model does the Internet use?
- What protocol should your program use if it is time-sensitive?
- What is the name of the documents that describe the technical details of protocols?
Answers

- What network model does the Internet use?
 - Packet-switched network

- What Internet protocol should your program use if it is time-sensitive?
 - UDP - user datagram protocol

- What is the name of the documents that describe the technical details of protocols?
 - RFCs - request for comments
Summary

- The Internet is a packet-switching network consisting of multiple networks joined together.

- A number of protocols and technologies underpin the Internet.

- As more people use the Internet, organisations tasked with maintaining it need to ensure the Internet can handle the increased demand (e.g., moving from IPv4 to IPv6).