

What is Artificial Intelligence?

- Artificial intelligence is the computational study of structures and processes that support intelligent behaviour.
- · Term first coined in 1956:
 - Dartmouth Summer Research Project on Artificial Intelligence
- · Areas of research include:
 - Computer vision
 - Natural language processing
 - Robotics
 - Knowledge-based systems
 - Machine learning

COMPSCI 111/111G - Artificial Intelligence

Aims of Artificial Intelligence

- · Three interrelated aims:
 - Engineering aim
 - Psychological aim
 - General/Philosophical aim

Source

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

10/05/18

COMPSCI 111/111G - Artificial Intelligence

Engineering Aim

- To engineer, or provide computational principles and engineering techniques for, "useful" artefacts that are arguably intelligent.
 - Mechanistic similarity to human or animal minds/brains is not necessary.

The artefact may be useful in one of a variety of domains:

- Industry
- Mathematics
- Art
- Everyday life

Source

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

10/05/18

COMPSCI 111/111G - Artificial Intelligence

Psychological Aim

 To create computational principles, theories or systems that provide a greater insight on cognition in human or animal minds/brains.

Source

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

10/05/18

COMPSCI 111/111G - Artificial Intelligence

-

General/Philosophical Aim

- To create computational principles, theories or systems that provide a greater insight on cognition in general.
 - Human made artefacts
 - Naturally occurring organism
 - Cognizant entities yet to be discovered.
- Includes looking at philosophical issues like the nature of intelligence, thought, consciousness, etc.

Source:

Metaphor and Artificial Intelligence, Why They Matter to Each Other, J.A. Barnden, University of Birmingham

1/05/18 COMPSCI 111/111G - Art

What is Intelligence?

- When we say that humans are intelligent, we mean they exhibit certain high-level cognitive abilities, including:
- Carrying out complex reasoning
 - E.g., solving physics problems, proving mathematical theorems
- Drawing plausible inferences
 - E.g., diagnosing automobile faults, solving murder cases
- Using natural language
 - E.g., reading stories, carrying out extended conversations
- Solving novel, complex problems
 - E.g., completing puzzles, generating plans, designing artifacts
- · Does not include:
- Executing motor skills or autonomic activity (breathing, reflexes etc.)

10/05/1

COMPSCI 111/111G - Artificial Intelligence

7

Philosophical View Of Intelligence

- Behaviourist/Functionalist approach:
- External behaviour matters
- If it behaves intelligently, then it is intelligent
- Turing test
- · Cognitive approach:
- What happens internally matters
- We must consider how it thinks, not just look at the behaviour
- Chinese room

10/05/18

COMPSCI 111/111G - Artificial Intelligence

The Turing Test

- Proposed by Alan Turing in his 1950 paper "Computing Machinery and Intelligence".
- Defines criteria for determining machine intelligence
- "Are there imaginable digital computers which would do well in the imitation game?"
- Imitation game:
- Three players A, B, and C
- A is a man and B is a woman. C, the interrogator is of either gender
- Player C is unable to see either player A or player B
- C asks A and B questions, trying to determine which of the two is a man and which is the woman
- Standard Turing test:
- Three players A, B, and C
- A is a computer and B is a person of either sex. C. the interrogator is also a person of either gender
- Player C is unable to see either player A or player B
- · C asks A and B questions, trying to determine which of the two is human and which is the machine

40.005.00

COMPSCI 111/111G - Artificial Intelligence

The Turing Test The Turing Test A B C C Imitation game Turing test

 If on completion of the Turing test, C cannot tell A and B apart, then machine A is intelligent.

Source: https://en.wikipedia.org/wiki/Turing_test

10/05/1

The Chinese Room

- Thought experiment proposed by John Searle in his 1980 paper "Minds, Brains, and Programs".
- · Refutes functionalist viewpoint:

"The appropriately programmed computer with the right inputs and outputs would thereby have a mind in exactly the same sense human beings have minds"

Source: https://en.wikipedia.org/wiki/Chinese_roo

10/05/18

COMPSCI 111/111G - Artificial Intelligence

The Chinese Room

- Premise:
- Person in a closed room who has no understanding of Chinese.
- Room contains a manual with instructions detailing the appropriate response, in Chinese characters, to every possible input, also in Chinese characters.
- Person can communicate via written responses with the outside world through a slot in the door.
- Scenario:
- A Chinese person passes messages written in Chinese, to the person in the Chinese Room.
- Person in the room responds using the manual; they appear to be conversant in Chinese despite not understanding any of the communication.
- Argument:
- Without "understanding", a machine's activity cannot be described as "thinking". Since a machine
 does not think, it does not have a "mind" in the same way you would say a person does.

Source: https://en.wikipedia.org/wiki/Chinese

10/05/18

COMPSCI 111/111G - Artificial Intelligenc

Chinese Room Rulebook

If you see this shape,
 "什麼"
followed by this shape,
 "帶來"
followed by this shape,
 "快樂"

then produce this shape, "爲天" followed by this shape, "下式".

10/05/18

OMPSCI 111/111G - Artificial Intelligence

Exercise 1

Which of the following statements best describes the Turing test?

- (a) Without understanding, a machine's activity cannot be described as intelligent.
- (b) Matching symbols is all that is required for a machine to be intelligent.
- (c) A machine must be able to perform symbolic representations of problems.
- (d) A machine's ability to conduct a conversation via auditory or textual methods.
- (e) The machine's ability to exhibit intelligent behaviour that is equivalent and indistinguishable from that of a human.

10/05/18

COMPSCI 111/111G - Python 01

Exercise 2

Which of the following best describes the philosophical viewpoint put forward by the Chinese room thought experiment?

- (a) Without understanding, a machine's activity cannot be described as intelligent.
- (b) If a person cannot differentiate between a machine and another person when communicating with them, the machine is intelligent.
- (c) Matching symbols is all that is required for a machine to be intelligent.
- (d) If a machine does not understand Chinese, it is not intelligent.

10/05/1

COMPSCI 111/111G - Python 01

15

Strong AI versus Weak AI

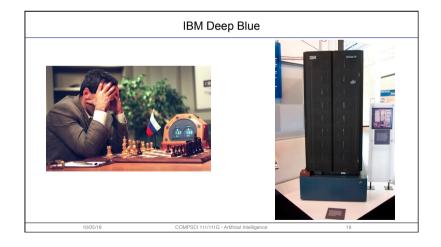
Strong AI

 The view that a computer could become self-aware and exhibit intelligent behaviour.

Weak AI

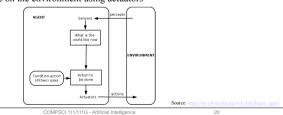
- The view that computers could not become self-aware and reason.
 - Can be used to solve specific problems in a well-defined domain

10/05/18


COMPSCI 111/111G - Artificial Intelligence

Examples Of Weak Al

IBM Deep Blue


- Chess playing computer
- Won a game against reigning world champion Garry Kasparov in 1996, losing the overall
- Won the match against Kasparov in 1997; first computer to do so in a match under standard chess tournament time controls.
- Deep Blue was programmed with history of Kasparov's previous games.
- Programming was modified between games to avoid traps.
- Kasparov was not permitted to study Deep Blue's previous games.

Examples Of Weak Al

Agents

- Autonomous entity that works in a defined environment.
- Agent achieves goals within environment using:
 Percepts observations of the environment obtained through sensors
 - Actions made on the environment using actuators

Curiosity Rover

- Part of the Mars Exploration Program to study:
 - Whether Mars could have ever supported life.
 - Role of water on Mars
 - Climate and geology of Mars
- · Curiosity rover navigates surface of Mars autonomously.

Source: http://www.inl.naca.gov/news/news.php/

10/05/10

MPSCI 111/111G - Artificial Intelligence

Representing Problems As Symbols

- · AI programs reduce problems to symbols.
- Problems are solved through the manipulation of these symbols.
- The manipulation of these symbols can seem intelligent.
- The computer does not "know" what the symbols mean.

10/05/18

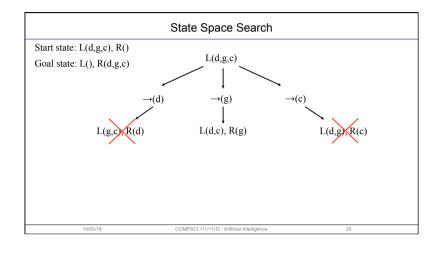
OMPSCI 111/111G - Artificial Intelligence

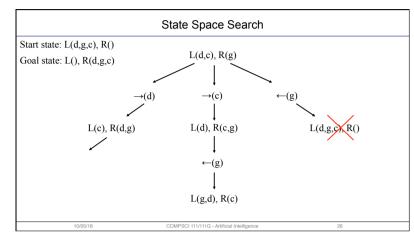
Example

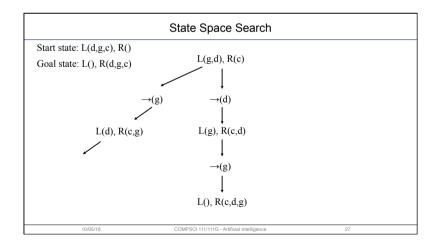
- Scenario:
 - A farmer needs to cross a river by boat taking with him his dog, goose, and a sack of corn.
- Constraints:
 - The boat is small and can only hold one item along with the farmer.
 - The dog can't be left alone with the goose. The dog will eat the goose.
 - The goose can't be left alone with the corn. The goose will eat the corn.
- Problem:
 - What is the order in which the farmer transfers his property across the river?

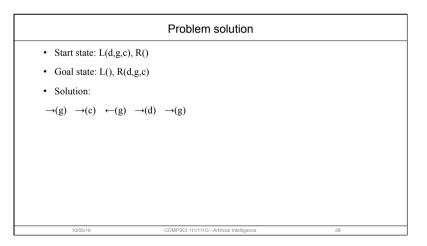
10/05/18

COMPSCI 111/111G - Artificial Intelligence


23


Symbolic Representation


- Dog = d
- Goose = g
- Corn = c
- At the start of the problem, all three are on the left bank of the river. The right bank is empty.
 - Start state: L(d,g,c), R()
- The goal is to get all three across to the right bank:
 - Goal state: L(), R(d,g,c)
- · Operators are used to indicate actions the farmer can take:
 - Row dog to right bank = \rightarrow (d)
 - Row corn to left bank = \leftarrow (c)


10/05/18

COMPSCI 111/111G - Artificial Intelligence

Knowledge-based Systems

Expert Systems (weak AI)

- Computer system that emulates decision making ability of a human expert.
- Two components:
 - Knowledge base repository of information/facts about the world as well as rules that can be applied to the facts. Rules usually have an IF-THEN representation.
 - Inference engine applies rules to known facts to deduce new knowledge.
 - Often used in Business Intelligence

Sources: https://www.html.com/psc/ Intelligence 29

MYCIN

MYCIN

- is an example of an early expert system.
- · Designed to diagnose bacterial infections.
- List of possible bacterial culprits provided, ranked from high to low based on the probability of each diagnosis.
- · Antibiotic treatment regimen, dose adjusted for patient's body weight, was also given.

Exercise 3

Which of the following statements regarding AI is FALSE?

- (a) Actuators let an agent make actions on their environment.
- (b) Deep Blue is a chess playing computer.
- (c) Percepts let an agent make observations of their environment.
- (d) An inference engine is a collection of If-Then rules.
- (e) None of the above.

CON

Exercise 4

Which of the following statements best describes strong AI?

- (a) The view that computers could become self-aware and exhibit intelligent behaviour.
- (b) The view that computers could appear to be self-aware and reason.
- (c) The view that computers must be developed to incorporate a behaviourist approach.
- (d) The view that computers must appear to be able to pass the Turing test.
- (e) The view that computers are non-sentient and focused on one narrow task.

8 COMPSCI 111/111G - Python

Machine Learning

- · Creating rules for Expert Systems was hard
- But, could we learn the rules automatically from data (i.e. examples)
- Give a "smart" algorithm a lot of examples (i.e., data) and "mine" the rules
- · Or discover patterns in the data
- · "Data Mining" was born
- · Now often taught as "Data Science"

10/05/18

OMPSCI 111/111G - Python 01

Machine Learning

- · Now used widely in business
 - Deciding what product to offer a customer
- · In recommender systems
 - What movies will Netflix show you
- · In natural language understanding
 - Apple's Siri and Amazon's Alexa
- · In image recognition
 - Google's Neural Network can recognise cats
- · Autonomous vehicles
 - Tesla (and all other manufacturers)

10/05/18

COMPSCI 111/111G - Python 01

Why has Al suddenly become so popular?

- · Nothing (much) theoretically has changed
- · Expert systems since the 1970s
- · Neural Networks invented in the 1950s
- Machine learning popularised (in academia) in the 1990s
- So why the sudden rise of AI?

Processing Power Data Storage

10/05/18

COMPSCI 111/111G - Python 0

Why has Al suddenly become so popular?

- · Nothing (much) theoretically has changed
- · Expert systems since the 1970s
- · Neural Networks invented in the 1950s
- Machine learning popularised (in academia) in the 1990s
- · So why the sudden rise of AI?

10/05/18

COMPSCI 111/111G - Python 0

Summary

- Artificial intelligence is the computational study of structures and processes that support intelligent behaviour.
- Two philosophical views of intelligence:
 - Behaviourist/functionalist and cognitive.
- Strong AI versus Weak AI.
 - The study of Weak AI has produced many useful applications.
- Emphasizes symbolic representations of problems
- Machine Learning attempts to learn rules or detect patterns in data

10/05/18

COMPSCI 111/111G - Artificial Intelligence