Databases 2 – Retrieving information

Lecture 15 – COMPSCI111/111G S1 2019
Today’s lecture

• Recap of yesterday’s lecture
• Using Queries to retrieve information from database
• Using Reports to retrieve information from a database
Recap

• Databases can use the relational model, where relationships exist between entities
• Relationships require tables, primary key and foreign key. Referential integrity is an important concept
• Looked at how to create tables, insert fields and data and create a relationship
Aspects of a database

• Before we can create our database, we need to decide how to:
 1. **Organize** data in our database
 • Models, tables, relationships
 2. **Enter** data in our database
 • Datasheet view
 3. **Retrieve** data from our database
 4. **Present** the retrieved data to the user
Retrieving data - queries

- **Queries** allow you to retrieve certain records from your database
- Two kinds of queries in Access:
 - Query by example (QBE):
 - Visual way of designing queries
 - Access converts your QBE queries into SQL
 - SQL (Structured Query Language):
 - Uses commands to retrieve data from databases
 - Developed by IBM in the late 1970’s
- Access creates a table containing the results of the query
QBE queries

1. Select Query Design from the Create Menu

2. Select tables to use in query
QBE queries

Choosing fields

Adding criteria to the field
QBE queries

‘Run’ button

Query results
QBE queries - sorting

- Results from QBE queries can be sorted in ascending and descending order.
QBE queries - expressions

- Fields can be combined together to create an expression with the Expression Builder.

We can use the Access Expression Builder to create derived fields that are calculated when queries are made.
QBE queries

- **A Totals QBE query** allows us to group data using functions such as Min, Max, Avg, Sum etc.
QBE queries

```
<table>
<thead>
<tr>
<th>Field</th>
<th>Land Area</th>
<th>Land Area</th>
<th>Land Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>Avg</td>
<td>Min</td>
<td>Max</td>
</tr>
<tr>
<td>Sort:</td>
<td>Criteria:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Show:</td>
<td>or:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
Query1

<table>
<thead>
<tr>
<th>AvgOfLand Area</th>
<th>MinOfLand Area</th>
<th>MaxOfLand Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>3416889</td>
<td>638</td>
<td>932641</td>
</tr>
</tbody>
</table>
```
QBE Exercise

• Complete this QBE grid so that it will return the first names, surname and grade (in that order) of all students who have received an A+. Sort the results by surname in alphabetical order.
QBE Exercise
SQL introduction

• **Structured Query Language (SQL)** was developed by IBM in the 1970s and is commonly used today

• It uses text commands to perform operations on databases, such as inserting and removing records and running queries
QBE queries

```sql
WHERE (((Country.Country)="New Zealand") AND ((Country.[Land Area])>100000));
```
SQL queries

• Four clauses that can be part of a simple SQL query:
 – SELECT
 – FROM
 – WHERE
 – ORDER BY

• Construct a SQL query that will return the first names, surname, and grade (in that order) of all students who have received an A+. Sort the results by surname in alphabetical order
SQL queries - SELECT

- Selects fields from the tables that we want to display in our results table
- Syntax:
 \[\text{SELECT [comma separated list]} \]
- SELECT [First Names], Surname, Grade
 - Note the square brackets around needed because of the space
SQL queries - FROM

• Specifies the table which holds the field(s) listed in the SELECT clause

• Syntax
 FROM [comma separated list]

• SELECT [First Names], Surname, Grade
FROM Students
SQL queries - WHERE

• Optional; used to provide criteria that limit the records displayed in the results table

• Syntax
 WHERE [criteria]

• There are a range of criteria we can use:
 – Comparisons (=, >, <, <=, >=, <>)
 • e.g., WHERE [Land Area] < 50000
 – BETWEEN ... AND ...
 • e.g., WHERE Price BETWEEN 10 AND 20
 – LIKE (some pattern)
 • e.g., WHERE [City] LIKE ‘San *'
 – AND, NOT, OR (combined with any of above)
 • e.g., WHERE Country = ‘New Zealand' AND City = ‘Auckland'
 – IS NULL, IS NOT NULL
 • e.g., WHERE [Postal Code] IS NOT NULL
SQL queries - WHERE

- **SELECT [First Names], Surname, Grade**
 FROM Students
 WHERE Grade = ‘A+’
SQL queries – ORDER BY

• Optional; allows us to sort our data in ascending or descending order

• Syntax:
 ORDER BY [name of field] [ASC/DESC]

• SELECT [First Names], Surname, Grade
 FROM Students
 WHERE Grade = ‘A+’
 ORDER BY Surname ASC
SQL queries

• You need to ensure that you put a semi-colon on the last clause of your SQL query:

 SELECT [First Names], Surname, Grade
 FROM Students
 WHERE Grade = 'A+'
 ORDER BY Surname ASC;

SQL queries

- We run a SQL query in the same way that we run a QBE query.
SQL exercise

• Write an SQL command that will *only* display the first name, surname and grade of students whose Total mark was greater than 70. Order the results table by ID number in ascending order
SQL exercise

• SELECT [First Names], Surname, Grade
 FROM Students
 WHERE Total > 70
 ORDER BY ID ASC;
Aspects of a database

• Before we can create our database, we need to decide how to:

1. **Organize** data in our database
 • Models, tables, relationships

2. **Enter** data in our database
 • Datasheet view

3. **Retrieve** data from our database
 • QBE and SQL queries

4. **Present** the retrieved data to the user
Reports

• Reports allow you to present the contents of a table, query etc. in a nicely formatted table.
• There are two ways of creating Reports:
 – Report Tool (show entire table, some formatting control)
The Report Wizard

• Select the tables and fields you want to display in your report
The Report Wizard

- You can group records in the report using particular fields
The Report Wizard

- You can sort records in the report by one or more fields
The Report Wizard

• You can set certain aspects of your report’s formatting in the Wizard

• The final step involves giving the report a name and clicking on ‘Finish’
The Report Wizard

- The finished report, ready for printing
- You can continue to modify the report’s formatting at this point

<table>
<thead>
<tr>
<th>Country</th>
<th>Num_Amphibians Reserve</th>
<th>Num_Fish</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27 Kakadu National Park</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>23 Girraween National Park</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>21 Shoalwater and Corio Bays Area Ramsar Site</td>
<td>02</td>
<td></td>
</tr>
<tr>
<td>12 Fitzgerald River National Park</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11 Grampians National Park</td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>11 Purnululu National Park</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>9 Bookmark Biosphere Reserve</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>9 Kosciusko National Park</td>
<td></td>
<td>11</td>
</tr>
<tr>
<td>9 Wilson's Promontory National Park</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>8 Prince Regent River Nature Reserve</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>7 Coorong National Park</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6 Flinders Chase National Park</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>6 Lavinia Nature Reserve</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>6 Hattah-Kulkyne NP and Murray-Kulkyne Park</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>5 Uluru - Kata Tjuta National Par</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5 Yathong Nature Reserve</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Summary

1. **Organize** data in our database
 - Models, tables, relationships

2. **Enter** data in our database
 - Datasheet view

3. **Retrieve** data from our database
 - QBE and SQL queries

4. **Present** the retrieved data to the user
 - Report Wizard