Digital Images and Vector Graphics

Lecture 13 - COMPSCI111/111G

The Seine and La Grande Jatte - Springtime
George Seurat 1888
Learning Outcomes

Students should be able to:

- Describe the differences between bitmap graphics and vector graphics
- Calculate the size in bytes of a bitmap image
- Compare and contrast different compression methods (jpeg, gif and png)
Bitmap Graphics

Storing pictures digitally

- Sample the image (divide into dots)
- Image resolution (number of dots)

200 x 250
40 x 50
20 x 25

http://en.wikipedia.org/wiki/Raster_graphics
Black and White pictures

Digital Pictures consist of small dots
 ▶ Each dot is called a picture element (pixel)

Storing information
 ▶ Black and White are only two states
 ▶ Use bits to represent pixels (0 = OFF, 1 = ON)
 ▶ One to one mapping, so known as Bitmap

http://en.wikipedia.org/wiki/Pixel
Displaying images

Images are displayed on an output device

- Screen / Printer
- Physical devices have limitations

Very small dots

Large dots
Resizing bitmap images

<table>
<thead>
<tr>
<th>Color</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>RED</td>
<td>80%</td>
</tr>
<tr>
<td>GREEN</td>
<td>80%</td>
</tr>
<tr>
<td>BLUE</td>
<td>77%</td>
</tr>
<tr>
<td>RED</td>
<td>36%</td>
</tr>
<tr>
<td>GREEN</td>
<td>36%</td>
</tr>
<tr>
<td>BLUE</td>
<td>13%</td>
</tr>
<tr>
<td>RED</td>
<td>93%</td>
</tr>
<tr>
<td>GREEN</td>
<td>91%</td>
</tr>
<tr>
<td>BLUE</td>
<td>0%</td>
</tr>
</tbody>
</table>
Resizing images

Image information with given resolution

- 8 x 6 pixels

Sampled at higher resolution
16 x 12

Sampled at lower resolution
4 x 3
Printing Bitmaps

Printer and Screen have different sized dots

- Scale (resample) the bitmap to ensure it looks good on both

Printer resolution 600 or 1200 dpi

Screen resolution 72 dpi
Imagine you have taken a picture with a 4 megapixel digital camera. For ease of calculation, assume that the picture is square, not rectangular.

Assume that you are printing this picture out on a printer that has approximately 4000 dots per inch. How many inches across would the picture be when it was printed?

- \[4,000,000 = 2000 \times 2000 \]

Therefore the picture would take up 0.5 by 0.5 inches.

If you viewed this image on a screen that had 1000 dots across, what portion of the image would be visible?

- You would see \(\frac{1}{2} \) the width and \(\frac{1}{2} \) the height.
- Therefore you would see: \(\frac{1}{2} \times \frac{1}{2} = \frac{1}{4} \) of the image
Colour Bitmaps

Colours

- Use more than 1 bit per pixel
- Map the binary number to a colour

<table>
<thead>
<tr>
<th>Bits</th>
<th>Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>Black</td>
</tr>
<tr>
<td>0001</td>
<td>Red</td>
</tr>
<tr>
<td>0010</td>
<td>Green</td>
</tr>
<tr>
<td>0011</td>
<td>Blue</td>
</tr>
<tr>
<td>0100</td>
<td>Yellow</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Each pixel uses 4 bits

Colour table used for display
How much memory is required?

One binary number used for each pixel
- 1 bit 2 colours
- 2 bits 4 colours
- 4 bits 16 colour
- 8 bits 256 colours
- 16 bits 65536 colours
- 24 bits 16,777,216 colours

How many bits are required for a 16 colour image 100 pixels wide x 8 pixels high?
- $100 \times 8 \times 4 = 3200$ bits = 400 bytes

An image using 24 bit colour, 1000 wide x 1000 high (1 Megapixel)?
- 3 MB
Exercises

- How many colours can be represented by 3 bits?

 \[2^3 = 8\] colours

- How many bits are required to represent 128 different colours?

 \[128 = 2^7\]. Therefore 7 bits are required.

- How much memory would be required to store a black and white image that is 10 pixels high and 5 pixels wide? Show your working.

 Number of colours = \(2^1\). Therefore 1 bit is required per pixel.

 Number of pixels = \(h \times w = 10 \times 5 = 50\)

 Memory needed = \(50 \times 1 = 50\) bits
Exercises

- How much memory (in bytes) would be required to store an image that has 256 different colours and is 3 pixels high and 5 pixels wide? Show your working.

- Number of colours = 256 = 2^8. Therefore 8 bits or 1 byte are required per pixel.

 Number of pixels = $h \times w = 3 \times 5 = 15$

 Memory needed = $15 \times 1 = 15$ bytes
Displays

Screens use a combination of Red, Green and Blue lights

- RGB colour

A single pixel at distance

A single pixel close up

Use one byte (8 bits) for each colour

- 256 different levels of red brightness
- 256 different levels of green brightness
- 256 different levels of blue brightness
Compressing Images

Simply reducing number of colours

Image is 200 pixels wide, 200 pixels high
= 40,000 pixels

- 31,942 colours, 75 KB
- 256 colours, 40 KB
- 16 colours, 20 KB
Compression Algorithms

Graphics Interchange Format (GIF)

- Lossless method
- 256 colours
- Good for graphics, poor for photos
- Uses an algorithm that was patented

Image Size: 200x100
Original (256 colours): 20KB
GIF (256 colours): 3KB

Image Size: 200x200
Original (256 colours): 40KB
GIF (256 colours): 32KB

http://en.wikipedia.org/wiki/Gif
Compression Algorithms

Portable Network Graphics (PNG)

- Replacement to GIF
- Lossless method
- 16 million colours (24 bit)
- Good for graphics, poor for photos

![Image of a child with ABC text]

Image Size: 200x100
Original (256 colours): 20KB
PNG (16M colours): 4KB

Image Size: 200x200
Original (16M colours): 120KB
PNG (16M colours): 68KB

http://en.wikipedia.org/wiki/Png
Compression Algorithms - JPEG

Joint Photographic Experts Group (JPEG)

- Lossy method
- 16 Million colours (24 bit)
- Averages nearby colours
- Different degrees of compression
- Good for photos, poor for graphics

http://en.wikipedia.org/wiki/jpeg
Vector Graphics

Object-oriented graphics

- Objects created independently
- Defined by mathematical formulae

Advantages

- Very small memory requirements
- Memory independent of the image size
- Scale to any size without loss of quality

Object Type: Square
Height: 100
Width: 100
Position_X: 354
Position_Y: 289
Fill Colour: Light Blue

http://en.wikipedia.org/wiki/Vector_graphics
Bitmap and Vector Graphics

Bitmap
.gif, .jpg, .png

Vector Graphics
.svg
Scalable Vector Graphics

Format for representing vector graphics images

- Open standard created by W3C
- New, gaining popularity
- XML, text file similar to HTML

```xml
<?xml version="1.0" encoding="utf-8" standalone="yes"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1"
width="520" height="520">
<linearGradient id="dk">
<stop offset="0" style="stop-color:#d4a000;stop-opacity:0"/>
<stop offset="1" style="stop-color:#000;stroke-width:9"/>
</linearGradient>
<linearGradient id="lt">
<stop offset="0" style="stop-color:#ffe681;stop-opacity:0"/>
<stop offset="1" style="stop-color:#ffe681"/>
</linearGradient>
<linearGradient x1="136.4" y1="383.6" x2="352.5" y2="136.4" xlink:href="#lt" gradientUnits="userSpaceOnUse"/>
<linearGradient x1="136.4" y1="383.6" x2="352.5" y2="136.4" xlink:href="#lt" gradientUnits="userSpaceOnUse"/>
<linearGradient x1="383.6" y1="136.4" x2="352.5" y2="167.5" xlink:href="#dk" gradientUnits="userSpaceOnUse"/>
<linearGradient x1="383.6" y1="136.4" x2="352.5" y2="167.5" xlink:href="#dk" gradientUnits="userSpaceOnUse"/>
<linearGradient x1="12.7" y1="380" x2="200"/>
<linearGradient x1="12.7" y1="380" x2="200"/>
<linearGradient x1="12.7" y1="380" x2="200"/>
<text x="200" y="380" style="text-align:bottom;">
</text>
<text x="200" y="380" style="text-align:bottom;">!
</text>
</svg>

http://en.wikipedia.org/wiki/Svg
Summary

Bitmap Images
- Pixel width x pixel height = resolution
- Use numbers to encode colour of each pixel (more colours = more bits per pixel)
- Look jagged when enlarged too much
- Take a lot of memory but can be compressed (e.g. JPG)

Vector Images
- Defined by mathematical formulae
- Can be enlarged and still look nice
- Small compared to bitmap images