
Lecture 14 - JSON

Text-based notation for data interchange
 Human readable

Object
 Unordered set of name-value pairs
 { name1 : value1, name2 : value2, …, nameN : valueN }

Array
 Ordered list of values
 [value1, value2, … valueN]

2 COMPSCI 107 - Computer Science Fundamentals

 json.dumps(data)
 Accepts Python object as an argument
 Returns a string containing the information in JSON format
 Typically write this string to a file

3 COMPSCI 107 - Computer Science Fundamentals

import json
def write(data, filename):
 file = open(filename, 'w')
 str_out = json.dumps(data)
 file.write(str_out)
 file.close()

 json.loads(data)
 Accepts string as an argument
 The string should be in JSON format
 Returns a Python object corresponding to the data

4 COMPSCI 107 - Computer Science Fundamentals

import json
def read(filename):
 file = open(filename)
 str_in = file.read()
 file.close()
 data = json.loads(str_in)
 return data

 json.dumps(data)

 json.dumps(data, indent=4, sort_keys=True)
 Formats the output over multiple lines

5 COMPSCI 107 - Computer Science Fundamentals

{'b': ['HELLO', 'WORLD'], 'a': ['hello', 'world']}

{
 "a": [
 "hello",
 "world"
],
 "b": [
 "HELLO",
 "WORLD"
]
}

Point class

Can create a dictionary to store state information then use json

Can use json to read dictionary and extract the state information

6 COMPSCI 107 - Computer Science Fundamentals

class Point:
 def __init__(self, loc_x, loc_y):
 self.x = loc_x
 self.y = loc_y

def generate_json(p):
 out = {'_Point' : True, 'x' : p.x, 'y' : p.y}
 return json.dumps(out, sort_keys=True)

def generate_point(txt):
 inp = json.loads(txt)
 result = Point(inp['x'], inp['y'])
 return result

 Start by thinking of the different kinds of input and the output

Test Cases

Work on the solution, keeping the test cases in mind

Test your code after each development advance

7 COMPSCI 107 - Computer Science Fundamentals

Debugging and tracing code are closely linked skills

To debug your code, you need to know:
 what your code *should* produce
 what your code *does* produce
 why is there is a difference

Use text output to determine data
 Test functions at entry and exit points
 Test loops at entry and exit points

 If data is large or complex, save output to a file
 JSON may help

8 COMPSCI 107 - Computer Science Fundamentals

A stack can be used in the algorithm to convert infix to postfix
 Divide expression into tokens
 Operators: +. -, *, /
 Operands: single digits
 Other tokens: brackets

9 COMPSCI 107 - Computer Science Fundamentals

Create a stack to store operators and a list for the output tokens
 Scan the tokens from left to right
 If the token is an operand, add it to the output list
 If the token is a left parenthesis, push it to the operator stack
 If the token is a right parenthesis, pop the operator stack until the

left parenthesis is removed. Append each operator to the output
list
 If the token is an operator, push it onto the operator stack. But first,

remove any operators that have higher or equal precedence and
append them to the output list
When there are no more tokens, remove operators on the stack and

append to the output list

10 COMPSCI 107 - Computer Science Fundamentals

 Show the operator stack and the output list at every step as the
following infix expression is converted to postfix

11 COMPSCI 107 - Computer Science Fundamentals

12 / (3 + 4) * 2 + 4

Create an empty stack
 Scan the list of tokens from left to right
 If the token is an operand, push it to the operand stack
 If the token is an operator, pop the stack twice
 The first element popped is the right operand
 The second element popped is the left operand

Apply the operator to the operands and push the result onto the
stack
When there are no more tokens, the stack should contain the result.

12 COMPSCI 107 - Computer Science Fundamentals

13 COMPSCI 107 - Computer Science Fundamentals

 Following the algorithm to evaluate postfix expressions, show the
operand stack, and the token being processed (at each step) as the
following postfix expression is evaluated:

7 12 8 9 - * 3 / +

How does a user know if the circular_queue is full? What should
happen when the circular_queue is full? Discuss

14 COMPSCI 107 - Computer Science Fundamentals

class circular_queue:
 def __init__(self, capacity):
 #creates empty list, count, front, back

 def is_empty(self):

 def enqueue(self, item):

 def dequeue(self):

 def size():

A Double-Ended Queue or Deque (pronounced ‘Deck’)
 An ordered collection of items where items are added and removed from either end,

either front or back

 add_front()

 add_rear()

 remove_front()

 remove_rear()

 is_empty()

 size()

15 COMPSCI 107 - Computer Science Fundamentals

Use a double ended queue to write a function that determines if a
string is a palindrome.

A palindrome is a sentence in which the letters appear in the same

order forwards and reverse. Punctuation is ignored.

16 COMPSCI 107 - Computer Science Fundamentals

>>> is_palindrome(‘bob’)
True

17 COMPSCI 107 - Computer Science Fundamentals

I, man, am regal - a German am I
Never odd or even
If I had a hi-fi
Madam, I'm Adam
Too hot to hoot
No lemons, no melon
Too bad I hid a boot
Lisa Bonet ate no basil
Warsaw was raw
Was it a car or a cat I saw?

Rise to vote, sir
Do geese see god?
"Do nine men interpret?" "Nine men," I nod
Rats live on no evil star
Won't lovers revolt now?
Race fast, safe car
Pa's a sap
Ma is as selfless as I am
May a moody baby doom a yam?

Ah, Satan sees Natasha
No devil lived on
Lonely Tylenol
Not a banana baton
No "x" in "Nixon"
O, stone, be not so
O Geronimo, no minor ego
"Naomi," I moan
"A Toyota's a Toyota"
A dog, a panic in a pagoda

Oh no! Don Ho!
Nurse, I spy gypsies - run!
Senile felines
Now I see bees I won
UFO tofu
We panic in a pew
Oozy rat in a sanitary zoo
God! A red nugget! A fat egg under a dog!
Go hang a salami, I'm a lasagna hog

def exampleA(n):
 s = "PULL FACES"

 for i in range(n):
 print("I must not ", s)

 for j in range(n, 0, -1):
 print("I must not ", s)

What is the big-O running time for the following function?

18 COMPSCI 107 - Computer Science Fundamentals

def exampleB(n):
 s = "JUMP ON THE BED"

 for i in range(n):
 for j in range(i):
 print("I must not ", s)

What is the big-O running time for the following function?

19 COMPSCI 107 - Computer Science Fundamentals

def exampleC(n):
 s = "WHINGE"
 i = 1
 while i < n:
 for j in range(n):
 print("I must not ", s)

 i = i * 2

What is the big-O running time for the following function?

20 COMPSCI 107 - Computer Science Fundamentals

def exampleD(n):
 s = "PROCRASTINATE"

 for i in range(n):
 for j in range(n, 0, -1):
 outD(s, n / 2)

def outD(s, b):
 number_of_times = int(b % 10)
 for i in range(number_of_times):
 print(i, "I must not ", s)

What is the big-O running time for the following function?

21 COMPSCI 107 - Computer Science Fundamentals

def exampleF(n):
 s = "FORGET MY MOTHER’S BIRTHDAY"
 i = n
 while i > 0:
 outF(s)
 i = i // 2

def outF(s):
 for i in range(25, 0, -1):
 print(i, "I must not ", s)

What is the big-O running time for the following function?

22 COMPSCI 107 - Computer Science Fundamentals

 If a particular quadratic time algorithm uses 300 elementary
operations to process an input of size 10, what is the most likely
number of elementary operations it will use if given an input of size
1000.

 (a) 300 000 000
 (b) 3 000 000
 (c) 300 000
 (d) 30 000
 (e) 3 000

23 COMPSCI 107 - Computer Science Fundamentals

You know that a given algorithm runs in O(2n) time. If your
computer can process input of size 10000 in one year using an
implementation of this algorithm, approximately what size input
could you solve in one year with a computer 1000 times faster?

24 COMPSCI 107 - Computer Science Fundamentals

25 COMPSCI 107 - Computer Science Fundamentals

	COMPSCI 107�Computer Science Fundamentals
	JavaScript Object Notation
	Writing JSON using Python
	Reading JSON using Python
	Writing JSON using pretty printing
	What about user-defined classes?
	Program Development
	Debugging
	Converting from infix to postfix
	Algorithm for converting infix to postfix
	Exercise
	Evaluating postfix expressions
	Exercise
	Exercise
	ADT Deque
	Exercise
	Bob – Weird Al Yankovic
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Challenge Question
	Challenge Question
	ChallengeQuestion

