CompSci 107 — Computer Science Fundamentals
S1-2015
Lab/Assignment 8 — Hash tables, sorting

Assignment Due Date: 7pm May 22, 2015

Worth: This assignment is This assignment is worth 2.5% of your final grade. The lab will be
marked out of 10. The programming exercises will be marked out of 9, with the remaining 1
mark from the code review process.

Topics covered:
* Map ADT, sorting algorithms

NOTE: Download the "A8.zip" file from the assignments website:

https://www.cs.auckland.ac.nz/courses/compscil07slc/labs/

PLEASE NOTE

The following exercises must be developed on your computer (or on your USB, or on your
university drive). Note that you may be asked to produce the code you developed. Once
you are happy that your answer for each question is correct, you will then need to insert the
part of the answer required into CodeRunner.

Exercise 1 (1 mark). Define a hash function, hash_function(), which uses a
mid-square technique (the keys are always integers of length greater than 7). To get the
hash value of a key, the hash function takes the digits from positions two, three, four, five
and six of the key (position 2 is the 3" digit), adds 23456, squares the number, removes the
first and last digit from the result and, finally, takes a modulus of 23, the table length.

Run the A8Ex01 application which should print two lists which contain exactly the same
numbers (the hash values).

Once you are happy that your function is correctly coded, insert the function code into
CodeRunner, assignment 8 question 1.

Exercise 2 (2 marks). The Map Abstract Data Type has the following operations:

put(key,value): add a new key-value pair to the map. If the key is already in the map then
replace the old value with the new value.

get(key): given a key, return the value stored in the map, None otherwise.

delete(key): delete the key-value pair from the map.

Define an implementation of the Map ADT. Your implementation uses two parallel lists, one
to store the keys and one to store the corresponding values (the _ init ()methodis
shown on the next page). Your implementation should use separate chaining to resolve
collisions (each element of the two lists making up your hash table items stores a Python
list).

CompSci107- 1

You will also need to add the following methods to your implementation:

def __len__(self): Returns the size of the hash table.
def __contains__(self, key): Allows the use of the in operator.
def __delitem__(self, key): Allows the use of statements such as: del hash_t[a_key]
to delete a key-value pair.
def __getitem__(self, key): Allows the use of statements such as:
value =hash_t[a_key]
to retrieve the value corresponding to the key.
def __setitem__(self, key, data): Allows the use of statements such as:
hash_t[a_key] = value
to add a key-value pair.
def hash_function(self, key): Add your hash function from exercise 1 —you will need to
add the parameter, self, and use self.size instead of the size 23.

The constructor of your implementation takes one parameter, the length of the hash table:

class HashTable:
def init (self, size):

self.size = size

self.slots = []

self.data = []

for i in range(self.size):
self.slots.append([])
self.data.append([])

Name your class, HashTable, and store it in a file named, MapWithChaining.py. To
test your completed implementation, run the Lab8Ex02 application. The output produced
should be as shown in the docstring comment at the bottom of the application. Note: the
files needed for this exercise are:

HashTableWithChaining.py #your Map implementation

IDNames.txt # The file of id-names pairs

A8Ex02.py # The application which tests your implementation

Once you are happy that your implementation is correctly coded, insert the nine methods of
your implementation code into CodeRunner, assignment 8 question 2.

Exercise 3 (1 mark). The hash table load factor and other statistics

Using your Map implementation from exercise 2 above, add the method,

get hash table stats(). This method returns a tuple containing eight statistics
about the state of the hash table:

(

the load factor,

total number of items in table,

the minimum chain length (only considering chains of length greater than zero),
how many slots have chains of the same length as the minimum length,

the maximum chain length,

how many slots have chains of the same length as the maximum length,

the average chain length (only considering chains of length greater than zero),
number of zero length chains

CompSci 107 - 2

Run the A8Ex0 3 application which should print seven lines of statistics. The output
produced should be as shown in the docstring comment at the bottom of the application.

Once you are happy that your method is correctly coded, insert the
get hash table stats() method (you may wish to define a helper method/s) into
CodeRunner, assignment 8 question 3.

Question 4 (1 mark). Bubble sort with fewer comparisons.

The bubble sort function is given in the A8Ex04 application. Add code to the
a_bubble sort () function so that, as well as sorting the parameter list, the function
returns a tuple containing the total number of swaps and the total number of comparisons.

Define a second function, improved_bubble sort (), which performs the same
bubble sort but stops the function execution as soon as all the elements in the parameter
list are sorted. This function returns a tuple containing the total number of swaps and the
total number of comparisons.

Run the A8Ex04 application. The first four lines of your output should be the same as

before: [30, 46, 33, 35] ... [78, 80, 93]
after: [30, 33, 35, 36] ... [78, 80, 93] True
Unimproved version: swaps: 6, comparisons: 55
Improved version: swaps: 6, comparisons: 27

The rest of your output will be different to that shown inside the docstring comment at the
bottom of the A8Ex04 file, but you should see a slight improvement in the number of
comparisons needed when the improved bubble sort() function is used to bubble
sort the elements.

Once you are happy that your functions are correctly coded, insert the definition of the
improved bubble sort() functioninto CodeRunner, assignment 8 question 4.

Question 5 (1 mark). insertion sort

The following list of numbers is being sorted using the insertion sort algorithm with the
smallest element on the left of the list. The sorted part of the list is growing from left to
right.

(11, 7, 12, 3, 1, 8, 14, 9, 13, 2]

In CodeRunner, assignment 8 question 5 show the list of elements after the 5t pass has
been completed. Your answer should be a list of numbers separated by commas, e.g., [...]

CompSci 107 - 3

Question 6 (1 mark). selection sort

The following list of numbers is being sorted using the selection sort algorithm with the
smallest element on the left of the list. The sorted part of the list is growing from right to
left.

., 7, 12, 3, 1, 14, 8, 9, 13, 2]

In CodeRunner, assignment 8 question 6 show the list of elements after the 5t pass has
been completed. Your answer should be a list of numbers separated by commas, e.g., [...]

Question 7 (1 mark). shell sort

The following list of numbers is being sorted using the shell sort algorithm with the smallest
element on the left of the list and the largest on the right. The list is being sorted using a
gap size of 5 followed by a gap size of 2. Show the elements after the gap size of 2 has been
completed.

[9I 8’ lll 6’ 5’ 3’ 4’ 7’ 1’ 2]

In CodeRunner, assignment 8 question 7 show the list of elements. Your answer should be a
list of numbers separated by commas, e.g., [...]

Question 8 (1 mark). Mergesort

The following list of numbers is being sorted using the mergesort function (lower down):

(5, 6, 8, 14, 7, 11, 5, 12, 2, 5]

def mergesort(a_ list):
if len(a_list) > 1:
middle = len(a_list) // 2
left half = a_list[:middle]
right half = a_list[middle:]

merge sort(left half)
merge_sort(right half)
#merge two halves() function not shown here

merge_ two_halves(a_list, left half, right half)

#POSITION X
POSITION X is the position in the code AFTER the left half of the list and the right half of list
have been merged. Draw a recursive call tree for the above mergesort using the list of
elements above. At one point, after the two halves have been merged, the merged list
contains exactly two occurrences of the element 5. Show all the elements of this merged
list.
In CodeRunner, assignment 8 question 8 show the list of elements. Your answer should be a
list of numbers separated by commas, e.g., [...]

Exercise 9 (1 mark). Participation in the code review of the programming exercises.
CompSci 107- 4

