CompSci 107 — Computer Science Fundamentals
S1-2015
Lab/Assignment 7 — Recursion

Assignment Due Date: 7pm May 15, 2015

Worth: This assignment is This assignment is worth 2.5% of your final grade. The lab will be marked
out of 10. The programming exercises will be marked out of 9, with the remaining 1 mark from the
code review process.

Topics covered:

* Using recursion to solve problems

NOTE: Download the "A7.zip" file from the assignments website:

https://www.cs.auckland.ac.nz/courses/compscil07slc/labs/

NOTE(VERY IMPORTANT): Your solutions for this assignment should ALL use
recursion (no loops).

PLEASE NOTE

The following exercises must be developed on your computer (or on your USB, or on your
university drive). Note that you may be asked to produce the code you developed. Once you are
happy that your answer for each question is correct, you will then need to insert the part of the
answer required into CodeRunner.

Exercise 1 (1 mark). complete the function, is_descending(), which takes 2

parameters: a list and a position in the list.

The function uses recursion and returns True if all the elements from the parameter
position to the end of the list are in descending order, False otherwise, e.g., the following
code:

a list = [7, 6, 5, 3, 2, -4]

going down = is_descending(a_ list, 0)

print(a_list, "is descending:", going down)

prints:

(7, 6, 5, 3, 2, -4] is descending: True

To test your completed implementation, run the IsDescending application. The output
produced should be:

[8, 6, 5] is descending: True

[8, 6, 7] is descending: False

(7, 6, 5, 3, 2, -4] is descending: True
[7] is descending: True

[8, 7, 7] is descending: False

[1] is descending: True

(1, 3, 5, 7, 2, 1] is descending: False

Once you are happy that your function is correctly coded, insert the function code into CodeRunner,

assignment 7 exercise 1.

CompSci107- 1

Exercise 2 (1 mark). Complete the recursive function, is_a pal(), which takes

one string parameter and returns True if the parameter string is a palindrome, False
otherwise. Note that the parameter string may contain characters which are not alphabetic
—these should be ignored by the function (use the isalpha () string method to test if a
character is an alphabetic character). You can assume that all the alphabetic characters in
the string are lower case characters.

The following code:

phrase = "Lisa Bonet ate no basil"
print(is_a_ pal(phrase.lower()))
print(is_a pal("Palindrome!".lower()))

prints:

True
False

To test your completed implementation, run the IsAPalindrome application. The
output produced is a list of phrases which are palindromes followed by a list of phrases
which are not palidromes (see the correct output within triple quotes at the bottom of the
application).

Once you are happy that your function is correctly coded, insert the function code into
CodeRunner, assignment 7 exercise 2.

Exercise 3 (2 marks). Complete the function, join multiply(), which takes5

parameters: a first list of numbers, a second list of numbers, a third list to be filled with
elements, position in the first list (initially 0), position in the second list (initially 0).

The function uses recursion to fill the the third parameter list with elements which are the
product of each element from the first list with each element in the second list (in this
order), e.g., the following code:

a list = [4, 5]
list2 = [3, 6, 8]

result = []
join multiply(a list, list2, result, 0, 0)
print(a_list, "join multiply", 1list2, "=", result)

prints:
[4, 5] join multiply [3, 6, 8] = [12, 24, 32, 15, 30, 40]

Note that if either of the first two parameter lists is empy, the function returns, i.e., it does
not add any elements to the third list.

To test your completed implementation, run the JoinMultiply application. The output
produced should be:

CompSci 107 - 2

[3] join multiply [4, 5, 6] = [12, 15, 18]
[4, 5] join multiply [3, 6, 8] = [12, 24, 32, 15, 30, 40]
[1, 2, 3] join multiply [4, 5, 6] = [4, 5, 6, 8, 10, 12, 12, 15, 18]
[1] join multiply [4, 5, 6] = []
[1, 2, 3] join multiply [] = []
[6, 2, 3] join multiply [4, 3, 2, 5] = [24, 18, 12,
30, 8, 6, 4, 10, 12, 9, 6, 15]

Once you are happy that your function is correctly coded, insert the function code into
CodeRunner, assignment 7 exercise 3.

Exercise 4 (2 marks). Complete the function, level out (), which takes 2

parameters: a list and a position in the list (initially 0). Note that the parameter list can
contain elements which are Python lists.

The function uses recursion to take all the levels out of the parameter list, i.e., the function
returns a new list with all the elements on the one level, e.g., the following code:
a_liSt = [4, [6, [81]1, [21, 3]

result = level out(a_list, 0)
print(a_list, "levelled:", result)

prints:
[4, [6, [81]1, [2]1, 3] levelled: [4, 6, 8, 2, 3]
Note: the instanceof function can be used to check if an elementisa 1ist object, e.g.,
if isinstance([2, 3], list):
print("Yes it is")

prints:
Yes it is

To test your completed implementation, run the OneLevel application. The output
produced should be:

[3, 6, 5] levelled: [3, 6, 5]

[3, [2, 1]1] levelled: [3, 2, 1]

[3, [2, [4, 5], 9, 6]] levelled: [3, 2, 4, 5, 9, 6]

[[5, 81, 3, [2, [4, 71, 9, [2]1]] levelled: [5, 8, 3, 2, 4, 7, 9, 2]
(r4, 11, reeel, 71, (811, (21, [[[]111] levelled: [4, 6, 7, 8, 2]

Once you are happy that your function is correctly coded, insert the function code into
CodeRunner, assignment 7 exercise 4.

Exercise 5 (3 marks). Use a recursive solution to complete the

get coins_ required() function which is passed:

a goal amount (in cents),

the number of available big coins
and,

the number of available small coins.

CompSci 107 - 3

A big coin is worth 25 cents and a small coin is worth 5 cents. The function returns a tuple
containing the number of big coins and the number of small coins which are required to
make up the goal amount. If the amount cannot be achieved with the coins available, the
function returns the tuple (-1, -1).

Note the your solution should use as many big coins as needed to make up the goal
amount., i.e., if a goal amount can be achieved using 3 big coins and 1 small coin or using 2
big coins and 6 small coins, then the tuple returned by the function should be (3, 1).

The following code:

goal = 65
big small = get coins_required(goal, 2, 7)
print(big small)

prints:
(2, 3)

To test your completed implementation, run the CoinsRequired application. The
output produced should be:

50 cents: (1,5)

110 cents: (3,7)

205 cents: (8,1)

550 cents: (22,0)

5000010 cents: (200000,2)
20 cents: (0,4)

Not possible!

65 cents: (2,3)

Not possible!

Once you are happy that your function is correctly coded, insert the function code into
CodeRunner, assignment 7 exercise 5.

Exercise 6 (1 mark). Participation in the code review of the programming exercises.

CompSci 107 -

4

