Comparing Implementations

 All of the three implementations are
ultimately array based or reference based

 Fixed size versus dynamic size

— An array-based implementation
* Uses fixed-sized arrays

— Prevents the push operation from adding an item to the
stack if the stack’s size limit has been reached

— A reference-based implementation
 Does not put a limit on the size of the stack

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -1

Comparing Implementations

» An implementation that uses a linked list versus
one that uses a reference-based implementation of
the ADT list

— Linked list approach
« More efficient (in reality not enough to be noticeable)
— ADT list approach

 Reuses an already implemented class
— Much simpler to write
— Saves time (for the programmer)

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -2

The Java Collections Framework
Class Stack

» JCF contains an implementation of a stack
class called Stack (generic)

e Derived from Vector

* Includes methods: peek, pop, push,
and search

e search returns the position of an object
on the stack (1 is the top of the stack)

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -3

An RPN (or postfix) calculator

» Reverse Polish Notation (named in honour

of Jan Lukasiewicz) (sometimes called Zciweisakul
notation)

356+2*-
This evaluates (3— (5 + 6) * 2)
» Operands are pushed on a stack.

» Operators pop off two elements, perform
the operation and push back the result

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -4

RPN Example

geaga

WE EN o Ex
ENIEREN N ENIERIET

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -5

A Simple RPN Calculator program

See RPNCalculator.java

Stack<Double> values = new Stack<Double>();
String input;
while ((input = Keyboard.readlnput()).length() > 0) {
try {
double number = Double.parseDouble(input);
values.push(number);
System.out.printin(values);
} catch (NumberFormatException e) {
ifT (values.size() < 2) {
System.out.printIn("*Not enough numbers on
the stack.™);
System.out._printin(values);
continue;

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -6

A Simple RPN Calculator program 2

double x, y;
double answer;
char operator;
operator = input.charAt(0);
switch (operator) {
case "+":
y = values.pop(Q);
x = values.pop(Q);
answer = X + y;
break;
.. // the other operations
default:
System.out.printIn('Incorrect operator.™);
System.out.printin(values);
continue;

}

values.push(answer);
System.out.printin(values);

}

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -7

Converting Infix Expressions to
Equivalent Postfix Expressions

* An infix expression can be evaluated by first being
converted into an equivalent postfix expression

* Facts about converting from infix to postfix

— Operands always stay in the same order with respect to
one another

— An operator will move only “to the right” with respect
to the operands

— All parentheses are removed

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -8

Converting Infix Expressions to
Equivalent Postfix Expressions

ch stack (bottom to top) postfixExp
a a
- - a
(= a
b -(ab
+ -(+ ab
[—(+ abc
* =(+ = abc
d —(+ = abcd
) -(+ abed« Move operators
= abed» + from stack to
- abcd* + postfixExp until " ("
/ -/ abcdx+
e -/ abcdx +e Copy operators from
abcds +e/— stack to post£ixExp
Figure 7-9

A trace of the algorithm that converts the infix expression a - (b + ¢ * d)/e to postfix form

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -9

Converting Infix Expressions to

Equivalent Postfix Expressions
ch | stack (bottom fo top) | postiixExp

a a
+ |+ a
(1+(a
b | +(ab
* + (* @Q
c [+(* abg
-+ (- abc* higher precedence operator popped off
d | +(- abc*d
) 1 +(abcd-

+ ahc*d-
I +/ ahc™d-
e | +/ abc*d-e

+ ahc*d-ef

abg*d-e/+

A trace of the algorithm that converts the infix expression a + (b * ¢ - d)/e to postfix form

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -10

The Relationship Between
Stacks and Recursion

» The ADT stack has a hidden presence in the
concept of recursion

» Typically, stacks are used by compilers to
implement recursive methods

— During execution, each recursive call generates an
activation record that is pushed onto a stack

» Stacks can be used to implement a nonrecursive
version of a recursive algorithm

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -11

The Abstract Data Type Queue

* A queue
— New items enter at the back, or rear, of the queue
— Items leave from the front of the queue
— First-in, first-out (FIFO) property
* The first item inserted into a queue is the first item
to leave

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -12

The Abstract Data Type Queue

» ADT queue operations
— Create an empty queue
— Determine whether a queue is empty
— Add a new item to the queue
— Remove from the queue the item that was added earliest
— Remove all the items from the queue

— Retrieve from the queue the item that was added
earliest

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -13

The Abstract Data Type Queue

» Pseudocode for the ADT queue operations
createQueue()
// Creates an empty queue.

isempty()
// Determines whether a queue is empty

enqueue(newltem) throws QueueException

// Adds newltem at the back of a queue. Throws
// QueueException if the operation is not

// successful

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -14

The Abstract Data Type Queue

» Pseudocode for the ADT queue operations
(Continued)

dequeue() throws QueueException

// Retrieves and removes the front of a queue.
// Throws QueueException if the operation is
// not successful.

dequeueAll)
// Removes all items from a queue

peek() throws QueueException

// Retrieves the front of a queue. Throws
// QueueException if the retrieval is not
// successful

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -15

The Abstract Data Type Queue

Operation Queue after operation

Front
gqueue.createQueue() {

queue.enqueue(5) 5

queue.enqueue(2) 52
queue.enqueue(7) 527

gueueFront = queue.peek() 5 2 7 (queueFront is 5)
queueFront = queue.dequeue() 5 2 7 (queueFront is5)
queueFront = queue.dequeue() 27 (queueFront is 2)
Figure 8-2

Some queue operations

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -16

Recognizing Palindromes

String: abchd

* A nonrecursive
recognition algorithm for
palindromes

— As you traverse the

Queue: abchbd

1

g Front Back
character string from left to
right, insert each character
into both a queue and a Stack: d |<Top
stack b
C
— Compare the characters at b
the front of the queue and a
the top of the stack i
Figure 8-3
The results of inserting a string
; into both a queue and a stack
© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -17

A Reference-Based
Implementation

 Possible implementations of a queue

— A linear linked list with two external references
» A reference to the front
» A reference to the back

(a} 2 . i > 1 > 7
Figure 8-4a firstNode lastNode

A reference-based implementation of a queue: a) a linear linked list with two
external references

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -18

A Reference-Based
Implementation

 Possible implementations of a queue (Continued)

— A circular linked list with one external reference
« A reference to the back

{)

(b) 2 . > 4 .

Y

.

Y

~
-—

Figure 8-4b lastNode

A reference-based implementation of a queue: b) a circular linear linked list with one
external reference

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -19

A Reference-Based
Implementation

Circular linked-list implementation

(N

2. lastNode.setNext(newNode);

J 1. newHode.setHext(lastHode.getHext());
3. lastNode = newNode;

lastNode newNode (references new node)

Figure 8-5

Inserting an item into a nonempty queue

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -20

A Reference-Based
Implementation

Circular linked-list implementation

(a) (b) l
3 3 -—1 newNode .setNext (newNode) ;

lastNode = newNode;

o b

lastNode newNode lastNode newlNode

Figure 8-6

Inserting an item into an empty queue: a) before insertion; b) after insertion

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -21

A Reference-Based
Implementation

Circular linked-list implementation

T °

l 1. firstNode = lastNode.getNext();
2 - » 4 » 1 » 7 2. lastNode.setNext(firstNode.getNext());
%D é
firstNode lastNode
Figure 8-7

Deleting an item from a queue of more than one item

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -22

