
© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -1

Comparing Implementations

• All of the three implementations are
ultimately array based or reference based

• Fixed size versus dynamic size
– An array-based implementation

• Uses fixed-sized arrays
– Prevents the push operation from adding an item to the

stack if the stack’s size limit has been reached

– A reference-based implementation
• Does not put a limit on the size of the stack

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -2

Comparing Implementations

• An implementation that uses a linked list versus
one that uses a reference-based implementation of
the ADT list
– Linked list approach

• More efficient (in reality not enough to be noticeable)

– ADT list approach
• Reuses an already implemented class

– Much simpler to write
– Saves time (for the programmer)

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -3

The Java Collections Framework
Class Stack
• JCF contains an implementation of a stack

class called Stack (generic)
• Derived from Vector
• Includes methods: peek, pop, push,

and search
• search returns the position of an object

on the stack (1 is the top of the stack)

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -4

An RPN (or postfix) calculator

• Reverse Polish Notation (named in honour
of Jan Lukasiewicz) (sometimes called Zciweisakul
notation)

3 5 6 + 2 * -
This evaluates (3 – (5 + 6) * 2)
• Operands are pushed on a stack.
• Operators pop off two elements, perform

the operation and push back the result

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -5

RPN Example

3 5 6 + 2 * -

3

5

3

6

5

3

11

3

2

11

3

22

3 -19

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -6

A Simple RPN Calculator program
See RPNCalculator.java

Stack<Double> values = new Stack<Double>();
String input;
while ((input = Keyboard.readInput()).length() > 0) {

try {
double number = Double.parseDouble(input);
values.push(number);
System.out.println(values);

} catch (NumberFormatException e) {
if (values.size() < 2) {

System.out.println("Not enough numbers on
the stack.");

System.out.println(values);
continue;

}

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -7

A Simple RPN Calculator program 2
double x, y;
double answer;
char operator;
operator = input.charAt(0);
switch (operator) {
case '+':

y = values.pop();
x = values.pop();
answer = x + y;
break;

… // the other operations
default:

System.out.println("Incorrect operator.");
System.out.println(values);
continue;

}
values.push(answer);
System.out.println(values);

}
© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -8

Converting Infix Expressions to
Equivalent Postfix Expressions

• An infix expression can be evaluated by first being
converted into an equivalent postfix expression

• Facts about converting from infix to postfix
– Operands always stay in the same order with respect to

one another
– An operator will move only “to the right” with respect

to the operands
– All parentheses are removed

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -9

Converting Infix Expressions to
Equivalent Postfix Expressions

Figure 7Figure 7--99
A trace of the algorithm that converts the infix expression a - (b + c * d)/e to postfix form

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -10

Converting Infix Expressions to
Equivalent Postfix Expressions

A trace of the algorithm that converts the infix expression a + (b * c - d)/e to postfix form

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -11

The Relationship Between
Stacks and Recursion

• The ADT stack has a hidden presence in the
concept of recursion

• Typically, stacks are used by compilers to
implement recursive methods
– During execution, each recursive call generates an

activation record that is pushed onto a stack
• Stacks can be used to implement a nonrecursive

version of a recursive algorithm

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -12

The Abstract Data Type Queue

• A queue
– New items enter at the back, or rear, of the queue
– Items leave from the front of the queue
– First-in, first-out (FIFO) property

• The first item inserted into a queue is the first item
to leave

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -13

The Abstract Data Type Queue

• ADT queue operations
– Create an empty queue
– Determine whether a queue is empty
– Add a new item to the queue
– Remove from the queue the item that was added earliest
– Remove all the items from the queue
– Retrieve from the queue the item that was added

earliest

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -14

The Abstract Data Type Queue

• Pseudocode for the ADT queue operations
createQueue()
// Creates an empty queue.

isEmpty()
// Determines whether a queue is empty

enqueue(newItem) throws QueueException
// Adds newItem at the back of a queue. Throws
// QueueException if the operation is not
// successful

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -15

The Abstract Data Type Queue

• Pseudocode for the ADT queue operations
(Continued)
dequeue() throws QueueException
// Retrieves and removes the front of a queue.
// Throws QueueException if the operation is
// not successful.

dequeueAll()
// Removes all items from a queue

peek() throws QueueException
// Retrieves the front of a queue. Throws
// QueueException if the retrieval is not
// successful

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -16

The Abstract Data Type Queue

Figure 8Figure 8--22
Some queue operations

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -17

Recognizing Palindromes

• A nonrecursive
recognition algorithm for
palindromes
– As you traverse the

character string from left to
right, insert each character
into both a queue and a
stack

– Compare the characters at
the front of the queue and
the top of the stack

Figure 8Figure 8--33
The results of inserting a string

into both a queue and a stack
© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -18

A Reference-Based
Implementation
• Possible implementations of a queue

– A linear linked list with two external references
• A reference to the front
• A reference to the back

Figure 8Figure 8--4a4a
A reference-based implementation of a queue: a) a linear linked list with two
external references

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -19

A Reference-Based
Implementation
• Possible implementations of a queue (Continued)

– A circular linked list with one external reference
• A reference to the back

Figure 8Figure 8--4b4b
A reference-based implementation of a queue: b) a circular linear linked list with one
external reference

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -20

A Reference-Based
Implementation

Figure 8Figure 8--55
Inserting an item into a nonempty queue

Circular linked-list implementation

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -21

A Reference-Based
Implementation

Figure 8Figure 8--66
Inserting an item into an empty queue: a) before insertion; b) after insertion

Circular linked-list implementation

© 2006 Pearson Addison-Wesley. All rights reserved Lecture 18 Ch7 -22

A Reference-Based
Implementation

Figure 8Figure 8--77
Deleting an item from a queue of more than one item

Circular linked-list implementation

