
COMPSCI 105 S1 2017
Principles of Computer Science

Algorithm Analysis/Complexity

Agenda & Reading
 Agenda:

 Introduction
 Counting Operations
 Big-O Definition
 Properties of Big-O
 Calculating Big-O
 Growth Rate Examples
 Big-O Performance of Python Lists
 Big-O Performance of Python Dictionaries

 Reading:
 Problem Solving with Algorithms and Data Structures

 Chapter 2

Lecture 10-11COMPSCI1052

1 Introduction
What Is Algorithm Analysis?

 How to compare programs with one another?
 When two programs solve the same problem but look

different, is one program better than the other?
 What criteria are we using to compare them?
 Readability?
 Efficient?

 Why do we need algorithm analysis/complexity ?
 Writing a working program is not good enough
 The program may be inefficient!
 If the program is run on a large data set, then the running time

becomes an issue

Lecture 10-11COMPSCI1053

1 Introduction
Data Structures & Algorithm

 Data Structures:
 A systematic way of organizing and accessing data.
 No single data structure works well for ALL purposes.

 Algorithm
 An algorithm is a step-by-step procedure for solving a problem in a

finite amount of time.

 Program
 is an algorithm that has been encoded into some programming

language.
 Program = data structures + algorithms

AlgorithmInput Output

Lecture 10-11COMPSCI1054

1 Introduction
Algorithm Analysis/Complexity

 When we analyze the performance of an algorithm, we are
interested in how much of a given resource the algorithm
uses to solve a problem.

 The most common resources are time (how many steps it
takes to solve a problem) and space (how much memory it
takes).

 We are going to be mainly interested in how long our
programs take to run, as time is generally a more precious
resource than space.

Lecture 10-11COMPSCI1055

1 Introduction
Efficiency of Algorithms

 For example, the following graphs show the execution time, in
milliseconds, against sample size, n of a given problem in different
computers

 The actual running time of a program depends not only on the
efficiency of the algorithm, but on many other variables:
 Processor speed & type
 Operating system
 … etc.

More
powerful
computer

Lecture 10-11COMPSCI1056

1 Introduction
Running-time of Algorithms

 In order to compare algorithm speeds experimentally
 All other variables must be kept constant, i.e.

 independent of specific implementations,
 independent of computers used, and,
 independent of the data on which the program runs

 Involved a lot of work (better to have some theoretical means of
predicting algorithm speed)

Lecture 10-11COMPSCI1057

1 Introduction
Example 1

 Task:
 Complete the sum_of_n() function which calculates the sum of

the first n natural numbers.
 Arguments: an integer
 Returns: the sum of the first n natural numbers

 Cases:

sum_of_n(5)
15

sum_of_n(100000)
5000050000

Lecture 10-11COMPSCI1058

1 Introduction
Algorithm 1

 sum_of_n Set the_sum = 0

Add each value to the_sum
using a for loop

Return the_sum

time_start = time.time()

the_sum = 0
for i in range(1,n+1):

the_sum = the_sum + I

time_end = time.time()
time_taken = time_end - time_start

The timing calls
embedded before and
after the summation
to calculate the time

required for the
calculation

Lecture 10-11COMPSCI1059

1 Introduction
Algorithm 2

 sum_of_n_2 Set the_sum = 0

Use the equation (n(n + 1))/2, to
calculate the total

Return the_sum

time_start = time.clock()

the_sum = 0
the_sum = (n * (n+1)) / 2

time_end = time.clock()
time_taken = time_end - time_start)

Lecture 10-11COMPSCI10510

1 Introduction
Experimental Result

 Using 4 different values for n: [10000, 100000, 1000000,
10000000]

 We shall count the number of basic operations of an

algorithm, and generalise the count.

n sum_of_n
(for loop)

sum_of_n_2
(equation)

10000 0.0033 0.00000181

100000 0.0291 0.00000131

1000000 0.3045 0.00000107

10000000 2.7145 0.00000123

NO impacted by the
number of integers

being added.

Time increase as we
increase the value of n.

Time
Consuming

Process!

Lecture 10-11COMPSCI10511

1 Introduction
Advantages of Learning Analysis

 Predict the running-time during the design phase
 The running time should be independent of the type of input
 The running time should be independent of the hardware and

software environment

 Save your time and effort
 The algorithm does not need to be coded and debugged

 Help you to write more efficient code

Lecture 10-11COMPSCI10512

2 Counting Operations
Basic Operations

 We need to estimate the running time as a function of
problem size n.

 A primitive Operation takes a unit of time. The actual
length of time will depend on external factors such as the
hardware and software environment
 Each of these kinds of operation would take the same amount of

time on a given hardware and software environment
 Assigning a value to a variable
 Calling a method.
 Performing an arithmetic operation.
 Comparing two numbers.
 Indexing a list element.
 Returning from a function

Lecture 10-11COMPSCI10513

2 Counting Operations
Example 2A

 Example: Calculating a sum of first 10 elements in the list

 Total = 34 operations

def count1(numbers):
the_sum = 0
index = 0
while index < 10:

the_sum = the_sum + numbers[index]
index += 1

return the_sum

1 assignment ->
1 assignment ->

11 comparisons ->
10 plus/assignments ->
10 plus/assignments ->

1 return ->

Lecture 10-11COMPSCI10514

 Example: Calculating the sum of elements in the list.

 Total = 3n + 5 operations
 We need to measure an algorithm’s time requirement as a

function of the problem size, e.g. in the example above the
problem size is the number of elements in the list.

2 Counting Operations
Example 2B

def count2(numbers):
n = len(numbers)
the_sum = 0
index = 0
while index < n:

the_sum = the_sum + numbers[index]
index += 1

return the_sum

1 assignment ->
1 assignment ->
1 assignment ->

n +1 comparisons ->
n plus/assignments ->
n plus/assignments ->

1 return

Lecture 10-11COMPSCI10515

 Performance is usually measured by the rate at which the running
time increases as the problem size gets bigger,
 ie. we are interested in the relationship between the running time and the

problem size.
 It is very important that we identify what the problem size is.

 For example, if we are analyzing an algorithm that processes a list, the problem size
is the size of the list.

 In many cases, the problem size will be the value of a variable,
where the running time of the program depends on how big that
value is.

2 Counting Operations
Problem size

Lecture 10-11COMPSCI10516

2 Counting Operations
Exercise 1

 How many operations are required to do the following tasks?

a) Adding an element to the end of a list

b) Printing each element of a list containing n elements

?

?

Lecture 10-11COMPSCI10517

2 Counting Operations
Example 3

 Consider the following two algorithms:
 Algorithm A:

 Outer Loop: n operations

 Inner Loop: ௡
ହ
	 operations

 Total = ሺ݊ ∗ ௡
ହ
	ሻ = ሺ	௡

మ

ହ
	ሻ operations

 Algorithm B:
 Outer Loop: n operations
 Inner Loop: 5 operations
 Total = n * 5 = 5*n operations

for i in range(0, n):
for j in range(0, n, 5):

print (i,j)

for i in range(0, n):
for j in range(0, 5):

print (i,j)

Lecture 10-11COMPSCI10518

2 Counting Operations
Growth Rate Function – A or B?

 If n is 106 ,
 Algorithm A’s time requirement is

 ሺ	௡
మ

ହ
	ሻ = ሺ	ଵ଴

భమ

ହ
	ሻ = 2 * 1011

 Algorithm B’s time requirement is
 5*n = 5 * 106

 What does the growth rate tell us
about the running time of the
program?

A is faster
when n is a

small number

Lecture 10-11COMPSCI10519

2 Counting Operations
Growth Rate Function – A or B?

 For smaller values of n, the differences between algorithm A
(n2/5) and algorithm B (5n) are not very big. But the
differences are very evident for larger problem sizes such as
for n > 1,000,000

 2 * 1011 Vs 5 * 106

 Bigger problem size, produces bigger differences

 Algorithm efficiency is a concern for large problem sizes

Lecture 10-11COMPSCI10520

3 Big-O
Definition

 Let and be functions that map nonnegative
integers to real numbers. We say that is O() if
there is a real constant, c, where c > 0 and an integer
constant n0, where n0  1 such that  c for
every integer n  n0.
 ݂ሺ݊ሻ	describe the actual time of the program
 ݃ሺ݊ሻ	is a much simpler function than ݂ሺ݊ሻ
 With assumptions and approximations, we can use ݃ሺ݊ሻ to

describe the complexity i.e. O(݃ሺ݊ሻሻ

Big-O Notation is a
mathematical formula that best

describes an algorithm’s
performance

Lecture 10-11COMPSCI10521

3 Big-O
Notation

 We use Big-O notation (capital letter O) to specify the
order of complexity of an algorithm
 e.g., O(n2) , O(n3) , O(n).
 If a problem of size n requires time that is directly

proportional to n, the problem is O(n) – that is, order n.
 If the time requirement is directly proportional to n2, the

problem is O(n2), etc.

Lecture 10-11COMPSCI10522

3 Big-O
Big-Oh Notation (Formal Definition)

 Given functions and we say that is O()
if there are positive constants, c and n0, such that

 c for every integer n  n0.

 Example: 2n + 10 is O(n)
 2n + 10  cn
 (c  2) n  10
 n  10/(c  2)
 Pick c = 3 and n0 = 10

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Lecture 10-11COMPSCI10523

3 Big-O
Examples

 Suppose an algorithm requires
 7n-2 operations to solve a problem of size n

 n2 - 3 * n + 10 operations to solve a problem of size n

 3n3 + 20n2 + 5 operations to solve a problem of size n

7n-2  7 * n for all n0 	1
i.e. c = 7, n0 = 1

n2 -3 * n + 10 < 3 * n2 for all n0  2
i.e. c = 3, n0 = 2

O(n)

O(n2)

O(n3)

݂ሺ݊ሻ	 c ∗ ݃ሺ݊ሻ	 for
every integer n >= n0.

3n3 + 20n2 + 5 < 4 * n3 for all n0  21
i.e. c = 4, n0 = 21

Lecture 10-11COMPSCI10524

4 Properties of Big-O
Properties of Big-O

 There are three properties of Big-O
 Ignore low order terms in the function (smaller terms)

 O(f(n)) + O(g(n)) = O(max of f(n) and g(n))

 Ignore any constants in the high-order term of the function
 C* O(f(n)) = O(f(n))

 Combine growth-rate functions
 O(f(n)) * O(g(n)) = O(f(n)*g(n))
 O(f(n)) + O(g(n)) = O(f(n)+g(n))

Lecture 10-11COMPSCI10525

4 Properties of Big-O
Ignore low order terms

 Consider the function:
 For small values of n the last term, 1000, dominates.
 When n is around 10, the terms 100n + 1000 dominate.
 When n is around 100, the terms n2 and 100n dominate.
 When n gets much larger than 100, the n2 dominates all others.

 So it would be safe to say that this function is O(n2) for values of n > 100
 Consider another function:

 Big-O is O(n3)
 And consider another function:

 Big-O is O(n2)

f(n) = n2 + 100n + log10n + 1000

f(n) = n + n2 + 5000

f(n) = n3 + n2 + n + 5000

Lecture 10-11COMPSCI10526

4 Properties of Big-O
Ignore any Constant Multiplications

 Consider the function:

 Big-O is O(n2)
 Consider another function:

 Big-O is O(n)
 And consider another function:

 Big-O is O(n)

f(n) = 254 * n2 + n

f(n) = 3n + 1000

f(n) = n / 30

Lecture 10-11COMPSCI10527

4 Properties of Big-O
Combine growth-rate functions

 Consider the function:

 Big-O is O(n log n)
 Consider another function:

 Big-O is O(n3)

f(n) = n * log n

f(n) = n2 * n

Lecture 10-11COMPSCI10528

4 Properties of Big-O
Exercise 2

 What is the Big-O performance of the following growth
functions?

 T(n) = n + log(n)

 T(n) = n4 + n*log(n) + 300n3

 T(n) = 300n + 60 * n * log(n) + 342

?

?

?

Lecture 10-11COMPSCI10529

4 Properties of Big-O
Best, average & worst-case complexity

 In some cases, it may need to consider the best, worst and/or
average performance of an algorithm

 For example, if we are required to sort a list of numbers an
ascending order
 Worst-case:

 if it is in reverse order

 Best-case:
 if it is already in order

 Average-case
 Determine the average amount of time that an algorithm requires to solve problems of

size n
 More difficult to perform the analysis
 Difficult to determine the relative probabilities of encountering various problems of a

given size
 Difficult to determine the distribution of various data values

Lecture 10-11COMPSCI10530

5 Calculating Big-O
Calculating Big-O

 Rules for finding out the time complexity of a piece of code
 Straight-line code
 Loops
 Nested Loops
 Consecutive statements
 If-then-else statements
 Logarithmic complexity

Lecture 10-11COMPSCI10531

5 Calculating Big-O
Rules

 Rule 1: Straight-line code
 Big-O = Constant time O(1)
 Does not vary with the size of the input
 Example:

 Assigning a value to a variable
 Performing an arithmetic operation.
 Indexing a list element.

 Rule 2: Loops
 The running time of the statements inside the loop (including

tests) times the number of iterations
 Example:

 Constant time * n
 = c * n = O(n)

x = a + b
i = y[2]

for i in range(n):
print(i)

Executed
n times

Constant
time

Lecture 10-11COMPSCI10532

5 Calculating Big-O
Rules (con’t)

 Rule 3: Nested Loop
 Analyze inside out. Total running time is the product of the sizes

of all the loops.
 Example:

 constant * (inner loop: n)*(outer loop: n)
 Total time = c * n * n = c*n2 = O(n2)

 Rule 4: Consecutive statements
 Add the time complexities of each statement
 Example:

 Constant time + n times * constant time
 c0 + c1n
 Big-O = O(f(n) + g(n))
 = O(max (f(n) + g(n)))
 = O(n)

for i in range(n):
for j in range(n):

k = i + j

x = x + 1
for i in range(n):

m = m + 2;

Outer loop:
Executed n times

Inner loop:
Executed n times

Executed
n times

Constant
time

Lecture 10-11COMPSCI10533

5 Calculating Big-O
Rules (con’t)

 Rule 5: if-else statement
 Worst-case running time: the test, plus either the if part or

the else part (whichever is the larger).
 Example:

 c0 + Max(c1, (n * (c2 + c3)))
 Total time = c0 * n(c2 + c3) = O(n)

 Assumption:
 The condition can be evaluated in constant time. If it is not, we need to

add the time to evaluate the expression.

if len(a) != len(b):
return False

else:
for index in range(len(a)):

if a[index] != b[index]:
return False

Test:
Constant time c0

True case:
Constant c1

False case:
Executed n times

Another if:
constant c2 + constant c3

Lecture 10-11COMPSCI10534

5 Calculating Big-O
Rules (con’t)

 Rule 6: Logarithmic
 An algorithm is O(log n) if it takes a constant time to cut the problem

size by a fraction (usually by ½)
 Example:

 Finding a word in a dictionary of n pages
 Look at the centre point in the dictionary
 Is word to left or right of centre?
 Repeat process with left or right part of dictionary until the word is found

 Example:

 Size: n, n/2, n/4, n/8, n/16, . . . 2, 1
 If n = 2K, it would be approximately k steps. The loop will execute log k in

the worst case (log2n = k). Big-O = O(log n)
 Note: we don’t need to indicate the base. The logarithms to different

bases differ only by a constant factor.

size = n
while size > 1:

// O(1) stuff
size = size / 2

Lecture 10-11COMPSCI10535

6 Growth Rate Examples
Hypothetical Running Time

 The running time on a hypothetical computer that computes 106 operations
per second for varies problem sizes

Notation n
10 102 103 104 105 106

O(1) Constant 1 µsec 1 µsec 1 µsec 1 µsec 1 µsec 1 µsec

O(log(n)) Logarithmic 3 µsec 7 µsec 10 µsec 13 µsec 17 µsec 20 µsec

O(n) Linear 10
µsec

100 µsec 1 msec 10 msec 100 msec 1 sec

O(nlog(n)) N log N 33 µsec 664 µsec 10 msec 13.3 msec 1.6 sec 20 sec

O(n2) Quadratic 100 µsec 10 msec 1 sec 1.7 min 16.7 min 11.6 days

O(n3) Cubic 1 msec 1 sec 16.7 min 11.6 days 31.7 years 31709
years

O(2n) Exponential 10 msec 3e17 years

Lecture 10-11COMPSCI10536

6 Growth Rate Examples
Comparison of Growth Rate



A comparison of growth-rate functions in graphical form
Lecture 10-11COMPSCI10537

6 Growth Rate Examples
Constant Growth Rate - O(1)

 Time requirement is constant and, therefore, independent of
the problem’s size n.
def rate1(n):

s = "SWEAR"
for i in range(25):

print("I must not ", s)

n 101 102 103 104 105 106

O(1) 1 1 1 1 1 1

Lecture 10-11COMPSCI10538

6 Growth Rate Examples
Logarithmic Growth Rate - O(log n)

 Increase slowly as the problem size increases
 If you square the problem size, you only double its time

requirement
 The base of the log does not affect a log growth rate, so you

can omit it.
def rate2(n):

s = "YELL"
i = 1
while i < n:

print("I must not ", s)
i = i * 2

n 101 102 103 104 105 106

O(log2 n) 3 6 9 13 16 19

Lecture 10-11COMPSCI10539

6 Growth Rate Examples
Linear Growth Rate - O(n)

 The time increases directly with the sizes of the problem.
 If you square the problem size, you also square its time

requirement

def rate3(n):
s = "FIGHT"
for i in range(n):

print("I must not ", s)

n 101 102 103 104 105 106

O(n) 10 102 103 104 105 106

Lecture 10-11COMPSCI10540

6 Growth Rate Examples
n* log n Growth Rate - O(n log(n))

 The time requirement increases more rapidly than a linear
algorithm.

 Such algorithms usually divide a problem into smaller
problem that are each solved separately.
def rate4(n):

s = "HIT"
for i in range(n):

j = n
while j > 1:

print("I must not ", s)
j = j // 2

n 101 102 103 104 105 106

O(nlog(n)) 30 664 9965 105 106 107

Lecture 10-11COMPSCI10541

6 Growth Rate Examples
Quadratic Growth Rate - O(n2)

 The time requirement increases rapidly with the size of the
problem.

 Algorithms that use two nested loops are often quadratic.

def rate5(n):
s = "LIE"
for i in range(n):

for j in range(n):
print("I must not ", s)

n 101 102 103 104 105 106

O(n2) 102 104 106 108 1010 1012

Lecture 10-11COMPSCI10542

6 Growth Rate Examples
Cubic Growth Rate - O(n3)

 The time requirement increases more rapidly with the size of the
problem than the time requirement for a quadratic algorithm

 Algorithms that use three nested loops are often quadratic and
are practical only for small problems.

def rate6(n):
s = "SULK"
for i in range(n):

for j in range(n):
for k in range(n):

print("I must not ", s)

n 101 102 103 104 105 106

O(n3) 103 106 109 1012 1015 1018

Lecture 10-11COMPSCI10543

6 Growth Rate Examples

Exponential Growth Rate - O(2n)
 As the size of a problem increases, the time requirement

usually increases too rapidly to be practical.

def rate7(n):
s = "POKE OUT MY TONGUE"
for i in range(2 ** n):

print("I must not ", s)

n 101 102 103 104 105 106

O(2n) 103 1030 10301 103010 1030103 10301030

Lecture 10-11COMPSCI10544

Exercise 3
 What is the Big-O of the following statements?

 Running time = n * 10 * 1 =10n, Big-O =

 What is the Big-O of the following statements?

 The first set of nested loops is O(n2) and the second loop is O(n). This is
O(max(n2,n)) Big-O =

for i in range(n):
for j in range(10):

print (i,j)

for i in range(n):
for j in range(n):

print(i,j)
for k in range(n):

print(k)

Executed
n times

Constant time

Executed
10 times

Executed
n times

Executed
n times

Executed
n times

?

?
Lecture 10-11COMPSCI10545

Exercise 3
 What is the Big-O of the following statements?

 When i is 0, the inner loop executes (n-1) times. When i is 1, the
inner loop executes n-2 times. When i is n-2, the inner loop
execute once.

 The number of times the inner loop statements execute:
 (n-1) + (n-2) ... + 2 + 1

 Running time = n*(n-1)/2,
 Big-O =

for i in range(n):
for j in range(i+1, n):

print(i,j)

?

Lecture 10-11COMPSCI10546

7 Performance of Python Lists
Performance of Python Data Structures

 We have a general idea of
 Big-O notation and
 the differences between the different functions,

 Now, we will look at the Big-O performance for the
operations on Python lists and dictionaries.

 It is important to understand the efficiency of these
Python data structures

 In later chapters we will see some possible
implementations of both lists and dictionaries and how the
performance depends on the implementation.

Lecture 10-11COMPSCI10547

7 Performance of Python Lists
Review

 Python lists are ordered sequences of items.
 Specific values in the sequence can be referenced using

subscripts.
 Python lists are:
 dynamic. They can grow and shrink on demand.
 heterogeneous, a single list can hold arbitrary data types.
 mutable sequences of arbitrary objects.

Lecture 10-11COMPSCI10548

7 Performance of Python Lists
List Operations

 Using operators:

my_list = [1,2,3,4]
print (2 in my_list)

zeroes = [0] * 20
print (zeroes)

True
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0]

Lecture 10-11COMPSCI10549

7 Performance of Python Lists
List Operations

 Using Methods:

Lecture 10-11COMPSCI10550

7 Performance of Python Lists
Examples

 Examples:my_list = [3, 1, 4, 1, 5, 9]
my_list.append(2)
my_list.sort()
my_list.reverse()

[3, 1, 4, 1, 5, 9, 2]
[1, 1, 2, 3, 4, 5, 9]
[9, 5, 4, 3, 2, 1, 1]

print (my_list.index(4))

my_list.insert(4, "Hello")
print (my_list)

2
Index of the first
occurrence of the

parameter

[9, 5, 4, 3, 'Hello', 2, 1, 1]

print (my_list.count(1)) The number of
occurrence of the

parameter

2

my_list.remove(1)
print (my_list)

print(my_list.pop(3))
print (my_list)

[9, 5, 4, 3, 'Hello', 2, 1]

3
[9, 5, 4, 'Hello', 2, 1]

Lecture 10-11COMPSCI10551

7 Performance of Python Lists
List Operations

 The del statement
 Remove an item from a list given its index instead of its value
 Used to remove slices from a list or clear the entire list

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
>>> del a[:]
>>> a
[]

Lecture 10-11COMPSCI10552

7 Performance of Python Lists
Big-O Efficiency of List Operators

Lecture 10-11COMPSCI10553

7 Performance of Python Lists
O(1) - Constant

 Operations for indexing and assigning to an index position
 Big-O = O(1)
 It takes the same amount of time no matter how large the list

becomes.
 i.e. independent of the size of the list

Lecture 10-11COMPSCI10554

7 Performance of Python Lists
Inserting elements to a List

 There are two ways to create a longer list.
 Use the append method or the concatenation operator

 Big-O for the append method is (1) .
 Big-O for the concatenation operator is () where is the

size of the list that is being concatenated.

Lecture 10-11COMPSCI10555

7 Performance of Python Lists
4 Experiments

 Four different ways to generate a list of n numbers starting
with 0.
 Example 1:

 Using a for loop and create the list by concatenation

 Example 2:
 Using a for loop and the append method

 Example 3:
 Using list comprehension

 Example 4:
 Using the range function wrapped by a call to the list constructor.

for i in range(n):
my_list = my_list + [i]

for i in range(n):
my_list.append(i)

my_list = [i for i in range(n)]

my_list = list(range(n))

Lecture 10-11COMPSCI10556

7 Performance of Python Lists
The Result

 From the results of our experiment:

 1) Using for loop
 The append operation is much faster than concatenation

 2) Two additional methods for creating a list
 Using the list constructor with a call to range is much faster than a list

comprehension

 It is interesting to note that the list comprehension is twice as fast
as a for loop with an append operation.

Append: Big-O is O(1)
Concatenation: Big-O is O(k)

for i in range(n):
my_list = my_list + [i]

for i in range(n):
my_list.append(i)

my_list = [i for i in range(n)]

my_list = list(range(n))

Lecture 10-11COMPSCI10557

7 Performance of Python Lists
Pop() vs Pop(0)

 From the results of our experiment:
 As the list gets longer and longer the time it takes to pop(0) also

increases
 the time for pop stays very flat.
 pop(0): Big-O is O(n)
 pop(): Big-O is O(1)
 Why?

pop()

pop(0)

Lecture 10-11COMPSCI10558

7 Performance of Python Lists
Pop() vs Pop(0)

 pop():
 Removes element from the end of the list

 pop(0)
 Removes from the beginning of the list.
 Big-O is O(n) as we will need to shift all elements from space to

the beginning of the list

12 3 44 100 5 … 18

3 44 100 5 … 18

Lecture 10-11COMPSCI10559

Exercise 4
 Which of the following list operations is not (1)?

1. list.pop(0)
2. list.pop()
3. list.append()
4. list[10]

?

Lecture 10-11COMPSCI10560

8 Performance of Python Dictionaries
Introduction

 Dictionaries store a mapping between a set of keys and a set
of values
 Keys can be any immutable type.
 Values can be any type
 A single dictionary can store values of different types

 You can define, modify, view, lookup or delete the key-value
pairs in the dictionary

 Dictionaries are unordered
 Note:
 Dictionaries differ from lists in that you can access items in a

dictionary by a key rather than a position.

Lecture 10-11COMPSCI10561

8 Performance of Python Dictionaries
Examples:

capitals = {'Iowa':'DesMoines','Wisconsin':'Madison'}
print(capitals['Iowa'])
capitals['Utah']='SaltLakeCity'
print(capitals)
capitals['California']='Sacramento'
print(len(capitals))
for k in capitals:

print(capitals[k]," is the capital of ", k)

y p

DesMoines
{'Wisconsin': 'Madison', 'Iowa': 'DesMoines',
'Utah': 'SaltLakeCity'}
4
Sacramento is the capital of California
Madison is the capital of Wisconsin
DesMoines is the capital of Iowa
SaltLakeCity is the capital of Utah Lecture 10-11COMPSCI10562

8 Performance of Python Dictionaries
Big-O Efficiency of Operators

 Table 2.3

Operation Big-O Efficiency
Copy ()
get item (1)
set item (1)
delete item (1)
contains (in) (1)
iteration ()

Lecture 10-11COMPSCI10563

8 Performance of Python Dictionaries
Contains between lists and dictionaries

 From the results
 The time it takes for the contains operator on the list grows

linearly with the size of the list.
 The time for the contains operator on a dictionary is constant

even as the dictionary size grows

 Lists, big-O is O(n)
 Dictionaries, big-O is O(1)

Dictionaries

Lists

Lecture 10-11COMPSCI10564

Quizzes
 Complete the Big-O performance of the following dictionary

operations

1. in my_dict ’ݔ‘

2. del my_dict[‘ݔ’]

3. my_dict[‘ݔ’] == 10

4. my_dict[‘ݔ’] = my_dict[‘ݔ’] + 1

?

Lecture 10-11COMPSCI10565

Summary
 Complexity Analysis measure an algorithm’s time requirement as a

function of the problem size by using a growth-rate function.
 It is an implementation-independent way of measuring an algorithm

 Complexity analysis focuses on large problems
 Worst-case analysis considers the maximum amount of work an

algorithm will require on a problem of a given size
 Average-case analysis considers the expected amount of work that it

will require.
 Generally we want to know the worst-case running time.

 It provides the upper bound on time requirements
 We may need average or the best case
 Normally we assume worst-case analysis, unless told otherwise.

Lecture 10-11COMPSCI10566

