CompSci 105
Lecture 36 — Revision Week 9-12

NOTE: All exam information without guarantee and
subject to change.

Youmgam Lhave Ty
to LEARN j+ 1
AS WELL?

I REALLY CRAMMED LAST NIGHT.

Exam Information

2 hours

Closed book, no calculator

55 questions, each worth between 1 and 2

points (100 points in total)

All multiple-choice questions

(5 choices like in mid-term test)

Part 1 (Angela): 16 points

Part 2 (Bruce): 42 points

Part 3 (Burkhard): 42 points (21 questions)
All material from the lectures, assignments
and labs is relevant unless specifically

excluded (for example, AVL trees are not Wi

part of the exam) ‘We‘ prefer to call ‘rlhis
.) test 'multiple choice, not

Both questions and answer choices may ‘multiple guess.™

contain Python code

Why MCQ? 3

* Because multiple choice exams contain many questions, they
require students to be familiar with a much broader range of
material than open answer exams do

* Multiple choice exams also usually expect students to have a
greater familiarity with details

* Lower risk for students — since there are more questions,
misunderstanding/misreading a question has less severe results

* Faster to mark (results are out earlier)

* Research and our own experience shows
that a good MCQ exam is as effective as
a traditional exam

Exam Technique

Get enough sleep before the exam

Plan your exam — identify easy questions and do them first

=> this boosts your confidence and avoids that you loose easy
points because you run out of time

When reading the question cover up the answer choices —

anticipate answer before seeing the possible answers

If you see expected answer circle it, but check out other answers

whether one of them is better

If you can’t answer a question (say, 1-2 min) come back to it later

If you run out of time at the end, do informed guesses

Don’t panic — remember that everyone has to answer the same

questions ©

1 cuesswE | TSl 1
LEABGD & | swcon T |
LESIOH, WZ| THE TEACWER

; m_g&“ﬁg%
Nl

5

Hashing — Example 1

Given is an initially empty hash table of size 7:

[None, None, None, None, None, None, None]
What does the hash table look like after inserting the keys 21,
13, 20, 27, 2 inthisorder using the hash function
h(key) = key % 7 ?

Using linear [21, 20, 27, 2, None, None, 13]
probing:

Using quadratic [21, 27, 2, 20, None, None, 13]
probing:

Using double hashing with h2(key) = 5 - key % 5 :

[21, None, 27, None, 20, 2, 13]

Hashing — Example 2

Modify the hash table for double hashing such that it stores for each

inserted key its probe sequence:
class BasicHashTable:
def __init__(self,size=7):
self.size = size
self_slots = [None] * self.size
self._probeSequences = [[]] * self.size

def put(self, key):
hash_value = self.hash_function(key)
if self.slots[hash_value] == None:
self._slots[hash_value] = key
self._probeSequences[hash_value] = [hash_value]
else:
currentProbeSequence = [hash_value]
next_slot = self.rehash(hash_value,key)
currentProbeSequence.append(next_slot)
while self_slots[next_slot] !'= None and self.slots[next_slot] != key:
next_slot = self.rehash(next_slot,key)
currentProbeSequence.append(next_slot)

if next_slot == hash_value:
return
if self.slots[next_slot] == None:

self._slots[next_slot] = key
self_probeSequences[next_slot] = currentProbeSequence

6

7

Sorting — Example 1

What does the list [67, 9, 55, 1, 22, 77, 11, 49]
look like after the first two passes with Bubble Sort, Selection Sort,
and Insertion Sort?

Bubble Sort: [9, 55, 1, 22, 67, 11, 49, 77]
[9, 1, 22, 55, 11, 49, 67, 77]

Selection Sort: [67, 9, 55, 1, 22, 49, 11, 77]
[11, 9, 55, 1, 22, 49, 67, 77]

Insertion Sort: [9, 67, 55, 1, 22, 77, 11, 49]
[9, 55, 67, 1, 22, 77, 11, 49]

Sorting — Example 2

The Selection Sort algorithm takes O(n?) time. How can we modify
the algorithm such that it finds the k largest values of a list in O(kn)
time and stores them on the right of the input list?

def k_largest(a_list,k):
for pass_num in range(len(a_list) - 1, len(a_list) — 1 - k, -1):
position_largest =0
foriin range(1, pass_num+1):
if a_list[i] > a_list[position_largest]:
position_largest =i
swap_elements(a_list, position_largest, pass_num)

8

Sorting — Example 3

How can we change the Shell Sort algorithm to sort a list of values
in decreasing order?

def shell_sort(a_list):
gap = len(a_list) // 2
while gap > 0:
for start_position in range(gap):
gap_insertion_sort(a_list, start_position, gap)
print("for gap: ", gap, " - ", a_list)
gap=gap//2

def gap_insertion_sort(a_list, start, gap):
foriin range(start + gap, len(a_list), gap):

current_value = a_list[i]

position =i

while position >= gap and a_list[position - gap] < current_value:
a_list[position] = a_list[position - gap]
position = position - gap

a_list[position] = current_value

Binary trees — Example 1 0

Consider the following binary trees. For each binary tree,
indicate if it is complete, full and/or balanced.

O Y
- ﬁ é | O
(b) (©) (d)

Binary trees — Example 2 i

The following diagram shows a binary tree with the root
node containing the value, A. Write the pre-order, in-order
and post-order traversals of the following binary tree.

pre-order: ABCDEFG

in-order: BDFGECA

()
e post-order: GFEDCBA
(=)

(a)

(a)Complete: (‘yesjno (c)Complete: yes(no)
Full: (yesjno Full: yes(no)
Balanced: no Balanced: yes

(b)Complete: .@no (d)Complete: yes{no
Full: ye Full: yes
Balanced: no Balanced: .\0

Binary trees — Example 3 .

Given a tree with the following traversal sequences:

Inorder: bdcae
Postorder: dcbea

What is the shape of the tree?

13

Binary trees — Example 4

Reconstruct a tree from its inorder and preorder traversal
sequence:

from ListBinaryTree import ListBinaryTree

def buildTree(inorder,preorder):

if (len(preorder)==0):
return None

else:
topElem = preorder[0]
leftLen = inorder.index(topElem)

leftTree = buildTree(inorder[0: leftLen],preorder[1:leftLen+1])
rightTree = buildTree(inorder[leftLen+1:],preorder[leftLen+1:])
return ListBinaryTree(topElem, leftTree,rightTree)

def mainQ):
print(“Binary Tree reconstructed by abcd001:')
inorder = input(Please enter the inorder sequence: ')
preorder = input(Please enter the preorder sequence: ')
if (len(inorder) != len(preorder)):
print(“Error: Input strings have different length™)
exit(-1)
tree = buildTree(inorder,preorder)

Heap — Example 1 &

Construct a min-heap from the list [6, 3, 9, 1, 5, 2] using the
O(n) method discussed in the lecture. Draw the resulting
heap as a binary tree after each step.

Heap — Example 2 s

Insert the value 0 into the heap below using the method
discussed in the lecture . Draw the heap as a binary tree
after each step. o

Heap — Example 3 &

Delete the minimum (highest priority) value from the heap
below using the method discussed in the lecture . Draw the
heap as a binary tree after each step. o

Binary Search trees — Example 1 -

Draw all possible binary search trees obtained by inserting
the values 1,2,3,4 in different orders into an initially empty
tree

@ @ @ @ @) 8)
) :3“, :1: y ‘n y 2 tq..] _}é—l\ (1—:] rZI
I ' T, / . T
{2 {’iél I)é;})) 3} [T] (‘2.‘}
@ b)) ?) @
2 2 @ @ @ Q Q
2y B . \ -
@@ a3 3 @ i) (2 2)
4 p A ", p
3) 4 2@ 3 @< /[‘3) %‘)
' 3 - e
) 3) @

Binary Search trees — Example 2 .

Give all possible orders of the values 1,2,3,4,5, which result
in a complete binary search tree when inserted into an
initially empty tree.

[4,2,1,3,5]
[4,2,1,5,3]

[4,2,3,1,5] e

[4,2,3,5,1]
[4,2,5,1,3]
[4,2,5,3,1] 8 6
[4,5,2,1,3]

[4,5,2,3,1] o 9

Binary Search trees — Example3 =

Given is a binary search tree and its level-order, inorder,
preorder, and postorder traversal sequence. Assumed we
insert the values into an initially empty binary search tree in
the traversal order. Which of these traversal sequences will
result in the original tree?

3 Level-order:42513 ‘/
Inorder: 12345
2) 5 X

Preorder:42135 ‘/

o 9 Postorder: 13254 x

Binary Search trees — Example4 =

Draw the binary search tree structure after inserting the
following integer search key values into an empty binary

search tree in the order given: 7, 3, 1, 6, 5, 10, 8, 9

9
)
aee @

Binary Search trees — Example 5

What does the tree on the

right look like after deleting in

this order the nodes: b
(1) 10

(2) 5

