CompSci 105
Lecture 34 - 35 Contents

Binary Search Trees

/11001011 THAT'S ™
10010010 HILARIOUSY

~ /"

Textbook: Chapter 6 : 1 Y

Foat
i

Trees can be very efficient

Trees are efficient. There are many algorithms which
work on trees in O(log n) time.

Usually efficiency depends on the height of the tree.

We want to make use of this efficiency and use binary trees
for searching / sorting etc. — how can we do this?

OBSERVATION: For a sorted (ordered) list we could very
efficiently find a key using a divide and conquer technique.
IDEA: Design trees which define an order © @

(39 (63
(29 (45)(e) (91

| 23|34]45|52| 65| 66| 68|71[91|

1

Binary search trees

Binary search trees are trees which have the following properties:

- Forall nodes the values in the left subtree of that node are smaller
than the value of the node

- For all nodes the values in the right subtree of that node are
greater than the value of the node

Which of the above trees are binary search trees?

Binary search trees - insert

To demonstrate, we add a list of elements in the order they
occur and ALWAYS MAINTAIN THE BINARY SEARCH TREE
PROPERTY. For example, the following list:

70,31, 93,94, 14, 23,73

70, 31, 93, 94, 14, 23, 73

!

70, 31, 93,94, 14, 23,73 @

! ©

Binary search trees - insert

70, 31, 93, 94, 14, 23,73

f
Q
70, 31, 93, 94, 14, 23, 73 DO,

! ©
©

70, 31, 93, 94, 14 23,73

Binary search trees - insert ‘

(79
70, 31, 93, 94, 14, 23, 73 @ @
! 1) ()
e@
70, 31, 93, 94, 14, 23, 7% @ @
(19) (73)(s9)

Adding elements to a
binary search trees

Create a binary search tree by adding the following values

in the order given: 65 34 66 91 23 45 71 52

Binary search trees - code :

We just use a single

class BST: X
. value in each node.
def __init__ (self, value, parent=None): Just the key.

self.value = value

self left = None Some jobs are easier

. if we have a
self.right = None reference to the
self.parent = parent parent node.

from BinarySearchTree import BST bst — @
def main(): bst — value
bst = BST(55) left
main() right
parent

Binary search trees — book code - Binary search trees — insert code «

class BST: class BST:
def If_klnlt_k (self, key, value, .. parent=None): def insert(self, value):
:If. zy|;a§y alue if value == self.value: [we are not allowing duplicates
. =valu . :
pay _ The book code uses _return —if key exist already,
self.left = None 2 key and a payload elif value < selfvalue: insert does nothing
self.right = None ' if self.left:
self.parent = parent e e el self.left.insert(value)
extension, more else:
def put(self, key, val): eablEr i thots | self.left = BST(value, parent=self)
else:
if self.right:
def get(self, key): self.right.insert(value)
else:
self.right = BST(value, parent=self)

Binary search trees — insert code = Binary search trees — locate code =

class BST: class BST:

Fi Iding anodein
—_ — ’ ’ st @

the binary search
tree.

def locate(self, value):

def insert(self, value): @ @ if valtue == s;lf.value:
return se
elif value < self.value and self.left:

return self.left.locate(value)
elif value > self.value and self.right:

bst ——— value 40

left * return self.right.locate(value)
def main(): /right else:
bst = BST(40) valte 37 parent None return None
bst.insert(37) 'r‘i*g]mgﬁe }/:fltult\elg:e If | do a bst.locate(67) how many times is
bst.insert(45) parent right None the line of code marked '*' executed.
main() parent

Make a call to bst.locate(??) which causes the greatest

number of comparisons. How many comparisons?

Binary search trees - code s

Get a string representation of the tree.

class BST:
def __str__(self):
"""Return a BST string representation
return self.get_string(0)
def get_string(self, spaces):
info ="'"* spaces + str(self.value)
if self.left:
info +="\n(l)' + self.left.get_string(spaces + 4)
if self.right:
info +="\n(r)' + self.right.get_string(spaces + 4)

return info

Binary search trees - code
1

14

class BST:
def __str__(self):
return self.get_string(0)
def get_string(self, spaces):
info=""'* spaces + str(self.value)

|
-
def main(): (1) 5
bst = BST(17) | (1) 2
. (r) 11
bst.insert(35) | (1) 9
(1) 8
print(bst) Ei; . 1e
maln() (1) 29
(r) 38

15

Traversing trees - level order

The nodes of the tree can be traversed in different orders.

Level order visits the tree:
left to right, level by level.

phtelrvkni

Traversing trees — inorder

The nodes of the tree can be traversed in different orders.

inorder visits the tree:
left
node
right

ehiklnprtv

Traversing trees — postorder

The nodes of the tree can be traversed in different orders.

postorder visits the tree,
left
right
node

eiknlhrvtp

Traversing trees — preorder

The nodes of the tree can be traversed in different orders.

preorder visits the tree,
node
left
right

phelkintrv

Binary search

trees — inorder string

class BST:

def inorder(self):
info=""
if self.left:

info += self.left.inorder()
info += str(self.value) +

if self.right:

info += self.right.inorder()

return info

Get the inorder
traversal string.

Binary search trees — from lists -

class BST:
def __init__ (self, ...):

;:'I.ef main():
bst = BST(51)
bst.insert(35)

'F.J.rint(bst.inorder())

1737 4043 51 5563 67 69

def create_from_list(a_list):
bst = BST(a_list[0])
foriin range(1, len(a_list)):

bst.insert(a_list[i])

return bst

def main():
a_list=] ???]
bst = create_from_list(a_list)
print(bst.inorder())

main()

Complete the list
which will create
the tree below:

21

Binary search trees — deleting

Deleting nodes is a little bit trickier than inserting
We have to maintain the binary search tree property

Three cases to consider:

def main():
bst = create_from_list([...])
bst = bst.delete(16) case1
bst = bst.delete(9) case2
bst = bst.delete(5) case3
main()

BST deleting — no children

CASE 1: deleting a node with no children

CASE 1: remove node from tree,

‘ Remember: we also have to think of the parent variable. ‘

remove parent pointer, return
resulting tree

def main(): casel
bst = create_from_list([...])
bst = bst.delete(16)

main()

BST deleting — no children

CASE 1: deleting a node with no children

bst = bst.delete(16)

BST deleting — no children

CASE 1: remove node from tree, remove parent pointer,

def delete(self, value): return resulting tree

node = self.locate(value)
if node==None:
return self # value not in tree, do nothing, return tree
elif (node.left==None and node.right==None):
CASE 1: node is leaf

if (node.parent == None): bst—> @
return None # node is root

elif (node.parent.left==node): @ @
node.parent.left=None

elsr?c:)de.parent.right=None G @ @

node.parent = None @
return self

BST deleting — one child)

CASE 2: deleting a node with one child only.

CASE 2: delete the node and shift
its child up to take its place by

changing the parent link.

def main():
bst = create_from_list([...])
bst = bst.delete(9) case2
main()

BST deleting — one child "’

CASE 2: delete the node and shift its child up to take its
place by changing the parent link.

bst = bst.delete(9)

27

BST deleting — one child

elif (node.left==None): # CASE 2a: node has only right child

if (node.parent== None):
node.right.parent = None
return node.right

elif (node.parent.left==node):
node.parent.left=node.right
node.right.parent=node.parent

else:
node.parent.right=node.right bst— @

node.right.parent=node.parent
node.parent = None @ @

node.right = None
return self G @ @

BST deleting — one child "

elif (node.right==None): # CASE 2b: node has only left child
if (node.parent==None):
node.left.parent = None
return node.left
elif (node.parent.left==node):
node.parent.left=node.left
node.left.parent=node.parent

else:
node.parent.right=node.left bst— @
node.left.parent=node.parent

node.parent = None @ @

node.left = None

return self a @ @

What is the inorder successor?

This is the next biggest value when an inorder traversal is
done on the tree.

How do we find the inorder
successor of a node?

The inorder successor of 857?
The inorder successor of 237

The inorder successor of 14?

The inorder successor of 70?

BST deleting — two children

CASE 3: deleting a node with two children.

CASE 3: Replace the value in the
node with its inorder successor.

We will also have to delete the
inorder successor node. But
that node has at most one child!
(think why)

def main():
bst = create_from_list([...])
bst = bst.delete(5) case3
main()

BST deleting — two children

CASE 3: Replace the value in the node with its inorder
successor. We will also have to delete the inorder
successor node (max 1 child — think about why ©).

bst.delete(5)

BST deleting — two children

32

else: # CASE 3: Node has left and right child

succ = node.right
while succ.left:

succ = succ.left
node.value = succ.value

succ = succ.delete(succ.

return self

Find inorder successor

value)

bst—>
G (55
(17) (43) (e9)

33

Performance of BST

NOTE: A tree is balanced if for every node its left
and right subtree vary in height by at most one

If BST is balanced than height is O(log n) and hence insert,
locate, delete are all O(log n)! Yeak Baly

Can show that average running times for
insert, locate, delete are all O(log n)!

{)
Worst case is O(n) ® Y“h!

BUT © : Can create tree which is always balanced and
hence always O(log n) [AVL tree - not part of this lecture]
Another famous tree is the Splay tree, which has an
amortised cost of O(log n)

34

Advantages of BST

Compared to unsorted list:
e Insert is slightly slower (O(log n) vs. O(1)), but delete
and find are much faster (O(log n) vs. O(n))

Compared to sorted list:
* Both have O(log n) find operation, but BST can also
insert and delete in O(log n)

Compared to heap:
* Can access all elements without removing them
e Can list elements in sorted order in O(n)
NOTE: Can use BST for sorting (Tree Sort):
Insert n elements and output in inorder

35

Exercises

Garrett knew it was important to keep his brain
from overheating during big tests.

Binary search trees — past exam Q1"

Draw the binary search tree structure after inserting the
following integer search key values into an empty binary
search tree in the order given:

40, 20, 10, 60, 70, 45, 50, 15, 55

Draw the binary search tree structures (draw 3 trees) after
deleting the following search key values in the order given:

)20
i) 40
iii) 45

Binary search trees — past exam Q2 Binary search trees — past exam Q3

The following diagram shows a binary tree with the root Consider the following binary trees. For each binary tree,
node containing the value, A. Write the pre-order, in-order indicate if it is complete, full and/or balanced.
and post-order traversals of the following binary tree. S
o pre-order:
(a) (b) (c) (d)
o in-order: (a)Complete: yes/no (c)Complete: yes/no
Full: yes/no Full: yes/no
e post-order: Balanced: yes/no Balanced: yes/no
o (b)Complete: yes/no (d)Complete: yes/no
e Full: yes/no Full: yes/no
Balanced: yes/no Balanced: yes/no

