CompSci 105
Lecture 33 Content

Heaps — using a binary tree structure to store a
priority queue

Textbook: Chapter 6

Passengers:

First Class Business Economy

(highest priority) ClClSS CIGSS
(medium priority) (lowest priority)

Priority Queues - ADT

A priority queue is a 'queue’ in which each item has a
priority and items with the highest priority are removed

before those with lower priority irrespective of when they
are added to the queue.

In this discussion we assume that each item has a
unique priority. —

Priority Queues - ADT

The things we want to do with a priority queue are:
Op 1: create the data structure
Op 2: add an items
Op 3: remove the item with the highest priority
Op 4: get the size
Op 5: find out if the structure is empty

We can implement this We can implement this

structure using a sorted list: structure using an

Op1:0(1) Op4:0(1) unsorted list:

Op 2: 0(n) Op5:0(1) Op1:0(1) Op4:0(1)

Op 3: 0(1) \| Op2:0(1) Op 5: O(1)
We can do better Op ?;O(n)

than this!

Priority Queue — using a binary heap’

We will implement an class BinHeap:

efficient priority queue def __init_ (self):

using a so-called binary

heap - a complete binary def main():

tree, which can be stored in heap = BinHeap()

a list. heap.insert(5)
heap.insert(7)

For simplicity, in these heap.insert(3)

examples (and in the text) heap.insert(11)

the heap only contains the

priority number (there is no print(heap.del_min()) 3

attached item — the print(heap.del_min()) 5

payload). print(heap.del_min()) 7
print(heap.del_min())

main() 1|1

Full Binary Tree

A binary tree is full if all its leaves are on the same level.
The number of nodes in level k of a full binary tree is 2k

D= @ *) = -
21 06 21 21
(9)1)ae) *

23

QUESTION:

How many nodes does a full binary tree of height h have? 2+ -1

Complete Binary Tree

A complete binary tree has all levels full except the last one.
The last level is filled from the left.

Complete Not complete

Complete Binary Tree

Things to note about complete binary trees:

 they are balanced (i.e. the height of the left and right subtree
differs by at most 1)

* half the nodes are leaves (or half + 1)

* the left subtree always has
more or the same number of
nodes as the right subtree.

Complete Binary Tree

A complete binary tree is
efficiently stored using a list:

11

12

For convenience we are going to leave the first element blank

and store the root element in position 1:

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

2

7

5

9

11

12

6

21

10

15

14

18

13

22

Complete Binary Tree

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 |7 |5 |9 |11|12|6 |21|10({15(14|18 (13|22 |8

QUESTIONS

What indices are the children of node at index 6 in the list?
What indices are the children of node at index i in the list?
What is the index of the parent of the node at index 67

Children of node L][i] are L[2i] and L[2i+1]
Parent of node L[i] is L[i // 2]

Priority Queue — using a binary heap’

We can improve on the performance of the sorted/unsorted list

implementation of a priority queue (see slide 3) by using a
binary heap.

A binary heap can be implemented using a complete binary tree.

This means that the elements of the heap implementation can
be stored using a Python list.

No links needed to
store the tree

©

11

Heap Properties

Below right is an example of a min heap structure:

The heap property: in a min heap, the

parent is always smaller than or equal
(we are using unique priorities in these
example) to both its children.

Note: we are studying min heaps, but
max heaps where the parent is always
greater than both children can also be
used if the highest priority is the larger
priority number.

Not a heap

Binary heap — implementation

The things we want to do with a heap (a priority queue
implementation) are:

1. create the heap

2. add items

3. remove the item with the highest priority

4. get the size

5. find out if the structure is empty

Must always maintain the heap property!

12

13

Binary heap — create the heap

class BinHeap:

def _init_ (self): Remember we
self.heap_list = [O] are ignoring the
first element of
the list.

from BinHeap import BinHeap

def main():
heap = BinHeap()

main()

14

Binary heap — create the heap

class BinHeap:
def _init_ (self, a_list = []):
self.heap _list = [0] + a_list
#see later slides

Better to use
optional named
arguments.

from BinHeap import BinHeap

Two ways to

def main(): create a BinHeap

heap = BinHeap()
heap = BinHeap(][9, 5, 8, 6, 3, 2])
main()

15

Binary heap - size(), is_empty()

class BinHeap:

def __init__(self, a_list = []): Remember we are
self.heap list =[0] + a_list ignoring the first
#isee later slides element of the list.

def size(self):
return len(self.heap_list) — 1

def is_empty(self): from BinHeap import BinHeap

return self.size() == def main():

heap = BinHeap()
print(heap.is_empty())
print(heap.size())

main()

Binary hea

— insert()

16

6 7 8 9 10 11 12

13 14 15

p

4

9 |11|8 |6 [21(10(15({14|18|13]...

my_heap.insert(4)
Add 4 to the end of the list. But now
the heap property has been violated:

4 5 6 7 8 9 10 11 12 13 14 15

4

13

18

14

15

10

21

11|18 |6

No longer a heap

Binary heap — perc_up() .

Need to keep comparing the element with its
parent until heap propery fulfilled or we reach
the root. Swap node and parent if the heap
property is violated.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 (71519 [11]8 |6 21101514181

o 1t 2 3 4 5 6 7 8 9 10 M 12 13 14 15
2 |7 |5 |9 |11 |8 @21 1015|1418 |13 |6
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 7@9 1118 |5 |21]10({15(14|18 |13 |6

Valid heap ©

Binary heap — insert() and perc_up()-

def insert(self, item):

self.heap_list.append(item) Insert as the last
last_position = len(self.heap _list) -1 | element and then

self.perc_up(last_position) do a perc_up()
def perc_up(self, i): While the child is smaller
parent_index=i//2 than the parent, swap them

while parent_index >0 and
self.heap_list[i] < self.heap_list[parent_index]:

self.heap_list[i], self.heap_list[parent_index] =
self.heap_list[parent_index], self.heap_list]i]

i=i//2
parent_index=i//2

Blnary heap — del _min()

19

0 1

3

4 5 6 7 8 9 10 11 12 13 14 15

4

9

11

5

8

21

10

15

14

18

13

16

Store the minimum item (index 1),

next = my_heap.del_min()

pop the last item from the list,
put this item into the root position.

The minimum priority item is always
the root item (index 1).

Problem - no longer a heap ®

4 5 6 7 8 9 10 11 12 13 14 15

9

11

5

8

21

10

15

14

18

13

Binary heap — perc_down()

0

1 2

3

4

5

6

7

8

9

10 11 12 13 14 15

7

4

9

11

5

8

21

10

15

14

18

13

Nee

to keep comparing the element, swappi
smallest child if the heap property is violated.

0 1 4 5 6 7 8 9 10 11 12 13 14 15
11|/5 (8 [21|10|15]|14|18 |13
0 2 3 4 5 7 8 9 10 11 12 13 14 15
4 |7 [5 |9 |11 8 2110|1514 |18 |13
o 1t 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 |7 11 13 21110|15| 14 18

Binary heap — min_child()

Return the index of the smaller of the two children.

def min_child(self, i):

left_child_index=1i* 2

right_child_index = left_child index + 1

if right_child_index > self.size():
return left_child_index

if self.heap_list[left_child_index] <

self.heap_list[right_child index]:

return left_child_index

return right_child_index

Binary heap — perc_down() .

def min_child(self, i): #see previous slide

def perc_down(self, i):
left_child_index=i* 2
while left_child_index <= self.size():
child = self.min_child(i)
if self.heap_list[i] > self.heap_list[child]:
self.heap_list[child], self.heap_list[i] =
self.heap_list[i], self.heap_list[child]

i = child While the smaller child is smaller
left_child index=i* 2| than the parent, swap them

i is the index of the element being percolated downwards

Binary heap — del_min() .

class BinHeap:
def _init_ (self, a_list =[0]): #

def del_min(self):
return_value = self.heap list[1]
replacement = self.heap_list.pop()
if self.size() > O:
self.heap _list[1] = replacement
self.perc_down(1)
return return_value
def min_child(self, i): # returns index of smaller child
#see previous slide

def perc_down(self, i): # percolates down the heap
#see previous slide

Binary heap operations — cost? .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 |7 15 |9 |11|12|6 (21]10(15({14({18|13|22|8

1. add item O(log n)
2. remove the item with the best priority O(log n)
3. get the size 0O(1)

4. find out if the structure is empty O(1)

Binary heap — create a heap from list

heap = BinHeap(][9, 5, 8, 6, 3, 2]) One way to create the

— heap from a list of

0 1
@ 9 @/@ 5 19 elements: add them to

an empty heap one by
one. What is the cost?

9 9 O(n log n)
99 0 1 2 3 6@ 0 1 2 3 4
5 19 |8 5 |16 |8 |9

Binary heap — create a heap from list

9,5, 8,6, 3,2]) Another way (BETTER):
e put elements into the list,

heap = BinHeap(

2 3 4 5 6

e rearrange the elements
S 613 |2 starting from the first
element which has a child
g (size // 2 —if the heap

elements start at index 1).

86 e e Keep rearranging (i.e.,
eee perc_down()) working

backwards towards the first
3 4 5 6 element.
>l |5 |s Can be shown to be O(n).

SerailoR0
2 |13 |8 |6 |5 |9
BIlC

Binary heap — create a heap from list

class BinHeap:
def __init__(self, a_list =[]):
self.heap_list = [0] + a_list
start_index = self.size() // 2
foriin range(start_index, O, -1):
self.perc_down(i)

Heapsort — not part of CompSci 105"

Create a heap from a list (O(n)) and remove the minimum
element adding it to the end of the list (decreasing the heap
size by one and increasing the sorted list by one each time).

0 1 2

3

3 [5 |8

o

©)

Binary heap — past exam question 1.

Draw the heap structure after inserting the following
integer search key values (in the order given) into an empty
min-heap:

15, 23, 42, 12, 91, 75

Show the structure of the heap after EACH insertion. NOTE:
show the state of the heap using a tree diagram (not a list).

Binary heap — past exam question 2

This is the BinHeap constructor presented in class.

def _init_ (self, a_list=[]):
self.heap_list = [0] + a_list
foriin range(self.size() // 2, 0, -1):
self.perc_down(i)

The size method returns the size() of the heap and the

perc_down() method percolates a value down the heap to

its correct place. Using the above algorithm, convert the list
[10,9,8,7,6,5,4,3,2,1]

into a binary min heap. Draw the tree representation of the
binary heap for each value of i in the for loop.

Binary heap — past exam question 3..

a) A heap can be constructed from an unsorted list.
Convert the list with the elements
10,5,2,9,3,6

into a min-heap, using the technique shown in lectures.
Show the heap (as a tree) at each step.

b) Draw the heap after one del_min() operation is
performed to the heap structure resulting from part a)

c) Draw the heap after another del_min() operation is
performed to the heap structure resulting from part b).

