CompSci 105
Lecture 31 and 32 Content

Trees — a non-linear data structure

Textbook: Chapter 6

& Original Artist
Reproduction rights obtainable from
wiw Cartoonstock.com

wWe VIEWIT AS A
PATHER. REMARKABLE
EEAT OF GENETIC
ENGINEERING:

—— ' ;}
| e E S
© Ciiginal Atist 1\, Bl =\ i =]
Reproductioh:rights obtainablefrom ———==227 |~ § .~
Mﬂ"t— wanwy CartoonStock.com : 5

What is a Tree?

A tree is an abstraction for a hierarchical structure.
It is defined as a set of points called nodes and a set of lines called edges where

an edge connects two distinct nodes.
A tree has three properties:

® One node is distinguished
called the root.

® Every node n other than the root is connected by an edge to exactly one
other node p closer to the root.

® A tree is connected in the sense that if we start at any node n other than
the root and move to the parent of n, continue to the parent of the parent

of n, and so on, we eventually reach the root.

Applications of Trees

Examples and Applications of trees include:

Family trees

Directory structures (file system)

Arithmetic expressions

Game trees (finding winning positions in a game)
Binary Space Partitioning (BSP) trees

(finding visible objects in a scene)

Search trees (finding all the paths back out of a maze)
Quadtrees (for efficient terrain rendering)

Octree (for fast collision detection, ray tracing etc.)
Constructed Solid Geometry (CSG) objects

Joint hierarchies (for skeletal animation of characters)

ctc.

Applications of Trees (Cont’d)

File Systems

A file system can be represented as a tree, with the top-most directory as

the root

Folders

w‘ Deskbop D es ktO p

+ i} My Dacuments

= _(_!' My Computer

,';L 314 Floppy (42
s [ocal Disk ()

L, DVDJCD-RW Drive (D:) |\/|y My

@ Local Disk (E:)

_'-f autol on Jingsun-afs' {G:) DOCU mentS Computer
+ _‘f, ffs an Jingsun-afs' (K
+ '[} Control Panel

% py Nebwork Places
2 Morkon Protected Recycle fin

+

+ [+ [=+

Applications of Trees (Cont’d)

Arithmetic Expressions

An arithmetic expression can be represented by a tree
® the leave nodes are the variables/values

® the internal nodes are the operations

(a+b) * (a-b) + 2

Applications of Trees (Cont’d)

Organisational Charts and Family Trees

(a) President

VP
Marketing

VP
Manufacturing

Director Director
Media Relations Sales

Personnel

(b)

Caroline

John/\

Jacqueline

/ \
/ \

Joseph Rose

Applications of Trees (Cont’d)

Bone Hierarchies for Skeletal Animation

Moving a bone around a joint (e.g. the upper arm around the elbow) moves

all child bones at the same time (e.g. the lower arm, hand and fingers)

Alien Song

©1999Nigtemnavone

Applications of Trees (Cont’d)

Quadtrees forTerrain
Rendering

The terrain is divided into squares of
different size: large squares for parts
of the terrain far away from the
viewer, and small squares for parts of

the terrain close to the viewer.

(Note: squares are divided into
triangles in order to achieve

continuity and faster rendering)

Applications of Trees (Cont’d)

Octrees for Space
Partitioning

® Divide 3d into cubes.

® Subdivide cube if the object(s) it
contains are too complex (e. g
for collision detection,

rendering, simulation)

10

Applications of Trees (Cont’d)

Constructed Solid Geometry (CSG) Objects
A CSG object is defined by applying set

operations (intersection, union, set
difference) to simpler objects, which
can be again CSG objects or can be
primitive objects such as spheres,

squares and cylinders.

11

Terminology

Parts of a tree
— Data objects (the circles) in a tree are called

node
nodes. e
In the textbook a node has a
key (used to identify item) and a
payload (the actual data stored) e e
— Links between nodes are called
edges (always pointing N — edge

downwards) e @ @

An empty tree is a tree without any nodes.

Terminology (cont'd)
Relationships

— Ais a parent of B and B is a child
of A, if an edge points from Ato B

— A node can have only one parent

— If two nodes have the same
parent they are siblings

12

A k-node tree is a tree
where every node has
at most k children

13

Terminology (cont'd)

A node a is an ancestor of a node n if we can reach n by
starting from a and going to its parent, its parent's parent,
and so on. A node is regarded as its own ancestor unless
we are talking about the proper ancestors.

A node d is a descendant of a node n if and only if nis an 0 e

ancestor of d. A node is regarded as its own descendant
unless we are talking about the proper descendants. Q 0

A path is a sequence of nodes ny, n,,..., n, such that nis the @
parent of n,, n, is the parent of n;, and so on. The length
of a path with k nodes is k-1 (the number of edges
forming the path).
A path with a single node (k = 1) has a length of 0.

Terminology (cont'd)

Names for different Tree nodes

— A node without parent is called root.

— A node without child(ren) is called
leaf.

— The non-leave node are also called
internal nodes.

— A node and all of its descendants
form a subtree.
(i.e. The tree is recursive in nature:
a tree is either empty or it is a node
whose children are trees)

leaves

14

Terminology (cont'd)

The level (or depth) of a node n is

equal to the number of edges
from the root to that node
— 0 if nis the root of the tree

— 1+(level of parent of n), if n
is not the root.

Level
B is 1

of

Level
A

i1Is O

15

of

16

Terminology (cont'd)

The height of a Tree is equal to the

maximum level of any node in the tree

| _ Height of the
— If a tree consist of only the root its tree is 2

height is O

— Otherwise the height is 1 greater than
the height of its tallest subtrees

height(Tree) = 1 + max
{ height(subTree,),

height(subTree,), ... }

Fun with trees!! ©

® Drawas many different trees with
exactly four nodes as you can.
® What is the maximum height
of a tree with n nodes?
What is its minimum height?
® What tree has only leat nodes and no internal nodes?
® What is the maximum height of a 2-node tree with 7
nodes? What is its minimum height?
o

Construct an Arithmetic Tree for the expression

(2+4+7)*%(2+38).

Binary trees

A binary tree is one where the
maximum number of children from
any node is two. The tree on the
right is an example of a binary tree.

What do we want to do with a tree object?

e create atree object
* insert nodes

* remove nodes

e traverse the tree

Binary trees 1

BinaryTree() — create a tree with one node

get_left_subtree() — return the binary
tree which is the left child.

get_right_subtree() — return the binary
tree which is the right child.

get value() — return the object stored in the current
node.

set_value(val) — store the object, val, in the current node.

insert_left(val) — create a new binary tree and insert it as
the left child of the current node.

insert_right(val) — create a new binary tree and insert it
as the right child of the current node.

Binary trees — How to implement *

Implementation 1: Use a list of lists to store the tree:

e the first element is the value in the node,

e the second element is the list representing the left subtree,
e the third element is the list representing the right subtree

For example,
tree —— Q
[6,
tree —— [5, None, None],
[11, None, None]

]

1

Binary trees — List implementation

class ListBinaryTree:
def _init_ (self, value):
self.node = [value, None, None]

from ListBinaryTree import ListBinaryTree

def main():
tree = ListBinaryTree(55)

main()

tree @

tree +—[55, None, None]

Binary trees — List implementation

class ListBinaryTree:
def __init__ (self, value):
self.node = [data, None, None]

def insert_left(self, value):
new_node = ListBinaryTree(value,
self.node[1], None)
self.node[1] = new_node

def insert_right(self, value):
new_node = ListBinaryTree(value,
None, self.node[2]
self.node[2] = new_node

2

def main():
tree = ListBinaryTree(55)
tree.insert_left(4)
tree.insert_right(6)

main()

[55,

tree —+7 [4, None, None],

[6, None, None]

]

tree e

3

Binary trees — List implementation

class ListBinaryTree: def main():
def __init__(self, value): tree = ListBinaryTree(55)
self.node = [value,None, None] tree.insert_left(4)

tree.insert_right(6)
def insert_left(self, value): tree.set_value(16)

see previous slide

def insert_right(self, value): main()

see previous slide

tree—»

def set_value(self, new_value):

self.node[0] = new_value @ a
def get_value(self): [16,

return self.node[0] tree| —1 [4 None, None],

[6, None, None]
]

4

Binary trees — List implementation

class ListBinaryTree:
def __init__ (self, value):
self.node = [value, None, None]

def main():
tree = ListBinaryTree(55)
tree.insert_left(4)
see previous slides for more right = ListBinaryTree(34)
tree.insert_tree_right(right)
def get_left_subtree(self):

return self.node[1] main()

def get_right_subtree(self):

return self.node[2]
tree— e
def insert_tree_left(self, tree):

self.node[1] = tree @ @

def insert_tree_right(self, tree):
self.node[2] = tree

Binary trees— _str_ ()

25

class ListBinaryTree:
def _init_ (self, value): def main():
self.node = [value,None, None] tree = ListBinaryTree(55)
tree.insert_left(4)
def insert_left(self, value):# tree.insert_right(6)
def insert_right(self, value):# print(tree) @
def set_value(self, new_value):#
def get_value(self):# main() g a
def get_left_subtree(self):#

def get_right_subtree(self):#
[55, [4, None, None],
[6, None, None]]

def __str__(self):
n = self.node

return "[" + n[0] + ", " +str(n[1]) + ", " + str(n[2]) + "]"

Show the tree and the output

from ListBinaryTree import ListBinaryTree

def main():

tree = ListBinaryTree(55)
tree.insert_left(4)
tree.insert_right(6)
tree.set_value(tree.get_value() + 4)

print("1.", tree.get_value())

right = tree.get_right_subtree()

left = tree.get_left_subtree() a e

left.insert_left(7)
right.insert_right(2)
right.insert_left(5)

print("2.", tree.get_right_subtree().
get_left_subtree().get_value())

print(tree)
main()

[59, [4, [7, None, None], None],
[6, [5, None, None], [2, None, Nonel]]]

Draw the tree 2

The output when the following code (just the skeleton
is shown here) is executed:

tree = ListBinaryTree(...)

print(tree)

is: | [4, [11, None, None], [7, [8, None, None], [9, None, Nonel]]]

Draw the tree: @ a

28

ListBinaryTree — readability

class ListBinaryTree: #many methods are missing
DATA =0 #constants forreadability
LEFT =1 The constructor,
RIGHT =2 __init__() is not
def set_value(self, new value): shown here

self.node[self.DATA] = new_value
def get_left_subtree(self):
return self.node[self.LEFT]
def get_right_subtree(self):
return self.node[self.RIGHT]
def str_ (self):
return '['+str(self.node[self.DATA])+', ' + str(self.node[self.LEFT])\
+', ' + str(self.node[self.RIGHT]) + ']’

Traversals of a Binary Tree

Visit each node in the tree
Recursive structure of a Binary Tree
root, left subtree, right subtree

Order of traversal
Pre-order traversal: root, traverse T, traverse T,
In-order traversal: traverse T, , root, traverse T
Post-order traversal: traverse T, , traverse T, root

root

29

30

Pre-order Traversal of Binary Tree

def preorder(tree):
if(tree!=None):
print(tree.get_value(), end="")
preorder(tree.get_left_subtree())
preorder(tree.get_right_subtree())

ﬁl—\

o
@

©
Preorder: 60, 20, 10, 40, 30, 50, 70

5

®
®

31

In-order Traversal of Binary Tree

def inorder(tree):
if(tree!=None):
inorder(tree.get_left_subtree())
print(tree.get_value(), end="")
inorder(tree.get_right_subtree())

pc)

o
@

1
Inorder: 10, 20, 30, 40, 50, 60, 70

5

®
®

32

Post-order Traversal of Binary Tree

def postorder(tree):
if(tree!=None):
postorder(tree.get_left_subtree())
postorder(tree.get_right_subtree())
print(tree.get_value(), end="")

4
Postorder: 10, 30, 50, 40, 20, 70, 60 1

Binary trees — Reference implement.’

class RefBinaryTree:
def __init_ (self, data):
self.data = data
self.left = None # RefBinaryTree, None if empty
self.right = None # RefBinaryTree, None if empty

from RefBinaryTree import RefBinaryTree

def main():
tree = RefBinaryTree(55) tree —— @
main()
tree| —+—data 55
left None
right None

Binary trees — Reference implement:

class RefBinaryTree:
def __init__ (self, data):
self.data = data
self.left = None
self.right = None

def insert_left(self, data):
t = RefBinaryTree(data)
if self.left == None:
self.left =t
else:
t.left = self.left
self.left =t

def insert_right(self, data):
t = RefBinaryTree(data)
if self.right == None:
self.right =t
else:
t.right = self.right
self.right =t

Binary trees — Reference implement.

from RefBinaryTree import RefBinaryTree

def main(): e @
tree = RefBinaryTree(55)

tree.insert_left(4)

tree.insert_right(6) @
tree.insert_left(7)
main() tree —1}— data 55
left
data 7/ right— data 6
left left None
data 4 right None right None
left None
right None

Binary trees — using nodes

36

class RefBinaryTree:
def __init_ (self, data):
self.data = data
self.left = None
self.right = None

def insert_left(self, data):#

def get_left_subtree(self):
return self.left

def get_right_subtree(self):
return self.right

def main():

def insert_right(self, data):# tree = RefBinaryTree(55)

def set_value(self, val):

tree.insert_left(4)

self.data = val

def get_value(self):
return self.data

tree.insert_right(6)

tree
@ r = tree.get_right_subtree()
a e print(r.get_value())

main()

Binary trees — printing nodes

37

def create_string(self, indent):
s=str(self.data) + "---+"
if self.left I= None:

s=s+"\n(l)"+indent+self.left.create_string(indent+" ")

if self.right = None:

s=s+"\n(r)"+indent+self.right.create_string(indent+" ")

return s

def _ str_ (self):
representation = self.create_string(" ")
return representation

tree @

55---+
(1) 4---+
(r) 6---+

Resulting output

155---4\n(l) 4---+\n(r) 6---+"

Returned string

38

Binary trees — printing nodes

from RefBinaryTree import RefBinaryTree

def main(): tree —— @
tree = RefBinaryTree(55)

tree.insert_left(4) Q e
tree.insert_right(6)
right = tree.get_right_subtree() a @ a

left = tree.get_left_subtree()

left.insert_left(7) S5---+
right.insert_right(2) (1) 4---+
right.insert_left(5) (1) T---+
print(tree) (r) 6---+
main() bl >= o
(r) 2- -+

Testing if an object is not None

39

def main():
number =5
if number:
print(1, "Number:", number)
if 4:
print(2, "Four")
value = None
if value:
print(3, "True:", value)
else:
print(3, "Not True:", value)
main()

variable returns
True if the object
is not None.

1 Number: 5
2 Four
3 Not True: None

Checking if the child is not None -~

def create_string(self, indent):
s=str(self.data) + "---+"
if self.left:
s=s+"\n(l)"+indent+self.left.create_string(indent+" ")
if self.right:
s=s+"\n(r)"+indent+self.right.create_string(indent+" ")
return s

Exercise - Draw the tree structure =

from RefBinaryTree import RefBinaryTree
def main():
tree = RefBinaryTree(5)
tree.insert_left(8)
tree.insert_right(2)
right = tree.get_right_subtree()
left = tree.get_left_subtree()

left.insert_left(7) 5———+

value = left.get_value() (n 12———+

left.set_value(value + 4) (D 7+

right.insert_right(3) (r) 2———+

right.insert_left(6) (n 6———+
(r) 3-———+

main()

Binary trees — Exercise p

TASK: Use the class
RefBinaryTree to
compute the sum of
all values stored in the
nodes of the tree.
(You can assume that
all nodes are real
integer values)

def get_node_sum(self):
sum = self.data
if self.left:
sum += self.left.get_node_sum()
if self.right:

sum += self.right.get_node _sum()
return sum

tree —— @

def main():
tree = RefBinaryTree(55)
code to construct tree
in picture on the left is omitted
print(tree.get_node_sum())

79

main()

Named arguments

def print_result(num, amt, spaces=3,
extra=None):
message = str(num) + "-" * spaces + str(amt)
if extra:
message +=" (" + str(extra) + ")"
print(message)

def main():
print_result(1, 34)
print_result(2, 34, 7)
print_result(3, 34, extra = 6)
print_result(4, 34, 7, 10)

main()

43

Python allows
function arguments
to have default
values. If the function
is called without the
argument,

the argument gets its
default value.

Also, arguments can
be specified in any
order by using
named arguments.

l===34
Gommmem- 34
3---34 (6)

Binary trees — Reference Impl. (v2) "

class RefBinaryTree:
def init_ (self, value, I=None, r=None):
self.data = value
self.left = |
self.right=r

def insert_left(self, value):
self.left = RefBinaryTree(value, I=self.left)

def insert_right(self, value):
self.right = RefBinaryTree(value, r=self.right)

def set_value(self, val):
self.data = val

Binary trees — Reference Impl. (v2) °

class RefBinaryTree:
#tcontinued from the previous slide

def get_value(self):
return self.data

def get_left_subtree(self):
return self.left

def get_right_subtree(self):
return self.right

class RefBinaryTree:
def __init_ (self, value, I=None, r=None):
self.data = value
self.left = |
self.right =r

from RefBinaryTree import RefBinaryTree

def main():
tree = ?7?

print(tree)

main()

46

Exercise

Using the RefBinaryTree
class, write the code
which creates the tree
below.

EE == e

9---+

(1) 3---+

(r) 7---+
(r) 6---+

(r) 2---+

