CompSci 105

Sorting Algorithms — Part 2

Shell Sort — another n? (or better!) sorting algorithm
Merge Sort —an n log(n) sorting algorithm

FUN WITH £
SORTING f. o

Textbook: Chapter 5 - gz

Gryphon House

Note: we do not study quicksort in CompSci 105

Shell Sort or diminishing increment sort
Remember:

Insertion sort has fewer comparisons than selection sort
Selection sort has fewer moves-swaps than insertion sort

=> |DEA: compare/shift non-neighbouring elements

Shell sort ™
On average shell sort has fewer £
comparisons than selection sort and \" § |
bubble sort and fewer moves than -

insertion sort

Shell sort is based on the insertion sort algorithm,
BUT: It instead of shifting elements many times by one
step, it makes larger moves

Shell Sort or diminishing increment sort 3

Divide the list into lots of small lists, e.g., for the
following list, say the gap (increment) used is 3

B Sublist 1
0o 1 2 3 4 5 6 B Sublist 2
[3, 88, 22, 19, 88, 22,47] mm Sublist 3
Insert!on Sort 3, 19, 47 ONE ITERATION
Insertion Sort 88, 38 (with 3 sublists)
Insertion Sort 22, 22

Then repeat sorting with reduced gap (=> fewer, but
larger sublists) until gap is 1.

NOTE: The normal insertion sort algorithm uses a gap of 1, but

in this algorithm sorting with gap 1 very efficient because list
almost sorted due to previous steps.

Shell Sort or diminishing increment sort

Example from book (page 182). Start with a gap of 3.
The results after the first pass are:

0 1 2 3 a 5 6 7 8

Initial | List @@@@

Start 0| by 3 2 shift
Start 1| by 3 1 shift
Start 2| by 3 3 shift

End of pass 1

17 26 20 44 55 31 54 77 93
17 20 | 26 | 44 95 31 54 7 1 93
17 20 | 26 31 44 55 54 77 93
17 20 | 26 31 a4 54 55 77 93

Shell Sort or diminishing increment sort

Now use a gap of 1 (i.e., ordinary insertion sort):

1 shift for 20

2 shifts for 31

1 shift for 54

sorted

Note: After previous step list is almost sorted => only four
moves required for this final step

Shell Sort algorithm

Choose a gap size, do an insertion sort on all the sublists
using this chosen gap size (this is a total of one pass of the
collection), repeat using smaller gap sizes until finally the
gap size is one.

In practice, it turns out that only occasionally there are
small values on the right hand side. Therefore the final
insertion sort needs to move few elements.

A default option for gap sizes is 2%-1, i.e. [..., 31, 15, 7, 3,1]
Research in the optimal gap sequence is ongoing

A often quoted empirical derived gap sequence is [701, 301,
132,57, 23, 10, 4, 1]

Shell Sort - Exercise

Start with a gap size of half the length of the list, halve
the gap size after each pass (text book implementation).
Show the elements at the end of each pass.

0 1 2 3 4 5 6 7 8

954 26 93 17 77 31 44 55 20 List to sort

PASS 1

PASS 2

PASS 3

Shell Sort - Code

def shell_sort(a_list):
gap = len(a_list) // 2
while gap > 0:

NOTE: We use this gap sequence because it is
simple and used in the text book. However, it
is a poor choice (see slide 10)

for start_position in range(gap):
gap_insertion_sort(a_list, start_position, gap)
#print("for gap: ", gap, " - ", a_list)

gap=gap/l 2

def gap_insertion_sort(a_list, start, gap):
for i in range(start + gap, len(a_list), gap):
current_value = a_list[i]

position =i

while position >= gap and a_list[position - gap] > current_value:
a_list[position] = a_list[position - gap]
position = position - gap

a_list[position] = current_value

Shell Sort — Code (continued)

def main():
a_list =[54, 26, 93, 17, 77, 31, 44, 55, 20]
print("before: ", a_list)
shell_sort(a_list)
print("after: ", a_list)

main()

before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
for gap: 4 - [20, 26, 44, 17, 54, 31, 93, 55, 77]
for gap: 2 - [20, 17, 44, 26, 54, 31, 77, 55, 93]
for gap: 1 - [17, 20, 26, 31, 44, 54, 55, 77, 93]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

Shell Sort — Big O ;

This is an improvement on all the previous sorting
algorithms.

The Big O for Shell Sort depends on the gap sequence and
input values — in general between O(n) and O(n?)

Gap sequence n/2, n/4, ..., 1 => worst case O(n?)
Gap sequence 21 (.., 31, 15, 7, 3, 1) => worst case O(n'>)

Gap sequence ..., 109, 41, 19, 5, 1 => worst case O(n’-333)

Merge Sort

This is a divide and conquer algorithm.

Cut the list in half
Sort each half

Merge the two sorted halves

You have already seen the divide and conquer algorithm using
binary search on a sorted collection of items.

11

Below is the call tree for the merge sort algorithm:

Merge Sort

0

1 2

3

4 5 6

54 26 93 17 77 31 44 55 20

7 8

N
0o 1 2 3 s s 1 s
54 26 93 17 77 31 44 55 20
PN PN
0 1 s . s c 7 s
54 26| |93 17 77 31 44 55 20
vV ooy PR
: s) 3 ‘ ; ; s
sa| |26| 93| |17| |77| |[31| a4 55 20
R
; '
s5| |20

12

Merge Sort

Below is the tree of the merged parts returned (the
pink parts) by the merge sort algorithm:

17 20 26 31 44 54 55 77 93
54 26 93 17 77 31 44 55 20

N
17 26 54 93 2031445577
54 26 93 17 77 31 44 55 20
AN AN
26 54 17 93 3177 2044 55
54 26| |93 17 77 31 44 55 20
r A r A r A N
54 26 93 1 77 31 44 20 55
sa| |26| (93| [17| |77 ‘31 a4 55 20
r A
55| |20

55 20

Splitting lists

def splitting_list _example():

list = [54, 26, 93, 17, 20]

listL = list[:2] # elements 0 to 1

listR = list[2:] # elements 2 to end of list
print(list, listL, listR)

def main():
splitting_list_example()

main()

[54, 26, 93, 17, 20] [54, 26] [93, 17, 20]

Slicing will be useful when halving the list in
the merge sort code.

14

Merging the two halves of the list

def merge(a_list, left_half, right_half): same aSI .
i=j=k=0]
while i < len(left_half) and j < len(right_half): k=

if left_halffi] < right_half[j]:
a_list[k] = left_half{i]

0
0
0

CONTINUED
while i < len(left_half):

i=i+1 | |
else: a_list[k] = left_halffi]
a_list[k] = right_half{j] i=i+1
j =j k=k+1
j=j+1
k=k+1

while j < len(right_half):

CONTINUED ON RIGHT
a_list[k] = right_halffj]

j=j+1
k=k+1

Merging the two halves of the list

a = [0, 0! 0! 0’ 0! 0! 0! 0]
merge (a, [1, 2, 5], [3, 4, 6, 8, 10])

print(a) [1,2,3,4,5,6,8,10]
|

[1,2,5] [3,4,6,8,10]
[1,2,3,4,5,6,8, 10]

Merge sort Code

def merge_sort(a_list):
if len(a_list) > 1:
mid = len(a_list) // 2
left_half = a_list[:mid]
right_half = a_list[mid:]

merge_sort(left_half)
merge_sort(right_half)

merge(a_list, left_half, right_half) Uses the function on

slide 15 to merge the
two halves.

a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]

print("before: ", a_list)

17

merge_sort(a_list) before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
print("after: ", a_list) after: [17, 20, 26, 31, 44, 54, 55, 77, 93]
D, a_

Merge Sort - Big O

The time for sorting a list of size 1 is constant, i.e. T(1)=1
The time for sorting a list of size n is the time of sorting

the two halves plus the time for merging, i.e.
T(n)=2*T(n/2)+n

Can proof: T(n) =n+nlogn

=> Big 0 is O(n log(n))

But there is a penalty of having to use extra space for
the two halves of a split list

18

Recursive call tree for a

list of size 128 (27) MS(128)
/_\
MS(64) MS(64)
MS(32) MS(32) MS(32)
(MS(®) |[MS@8) |[MS(®) |[MS@) | [MS(®) |[MS@) |[MS@) |
(MS(@®) |[[Ms@) | MS@) |[MS®) | [MSE) |
[MS(4) | [MS(4) | [MS(4) | [MS(4) | | MS@4) | [MS(4) |
[MS@) | [MS(4) | [MS(4) | [MS(4) | | MS(4) |
[MS@4) | [MS(4) | [MS(4) | [MS(4)| [MS(4) | [MS(4) |
[MS@) | [MS@) | [MS@4) | [MS(@4)| [MS(4) | [MS(4) |
(MS@) | [MS@) | (MS@) | ..

=

128 calls to MS(1

N

MS(32)

19

Summary

Best Worst
Bubble Sort (lecture) O(n”*2) O(n”2)
Bubble Sort (optimised) O(n) O(n*2)
Selection Sort O(n”*2) O(n”2)
Insertion Sort O(n) O(n*2)

Shell Sort (best gap
sequence) O(n) O(n (log n)*2)

Merge Sort O(n logn) O(n log n)
Tim Sort (used in Python,
hybrid of Merge Sort and
Insertion Sort) O(n) O(n log n)

Average
O(n”"2)
O(n”"2)
O(n”2)

O(n*2)

O(n (log n)*2)

O(n log n)

O(n log n)

20

Extra Memory
O(1)
o(1)
0o(1)

o(1)

o(1)

O(n)

O(n)

Note: A comparison based sorting algorithm can NOT be
better than O(n log n) in the average and worst case

