CompSci 105

Simple Sorting Algorithms
.1 :'lr-x»rf ﬁf«

Motivation
Bubble Sort
Selection Sort
Insertion Sort

Textbook: Chapter 5

Sorting: One of the Most Common Activities on
Computers

Example 1:

* Alphabetically sorted names, e.g. names in telephone book,
street names in map

Advantages:
 Can use efficient search algorithms:
* Binary search finds item in

O(log n) time SRS
* Interpolation search finds item in * S “-

O(log log n) time if uniformly distributed

Sorting: One of the Most Common Activities on

Computers (cont’d)

Example 2:

» Sorted numbers, e.g. house prices, student IDs, grades,

rankings

Advantages:

 Can use efficient search
algorithms (see example 1)

 Easy to find position or range

I, 11, 15, 19, 20, 24, 28, 34, 37, 47, 50, 57
T t 0
Q, Q, Q3

Lower quarlile Median Upper quartile

¥
17 26 42

of values in sorted list, e.g. minimum value, median value,
qguartile values, all students with A grades, all houses within

a certain price range etc.

3

Sorting: One of the Most Common Activities on
Computers (cont’d)

Example 3:

 Sort objects in space

Advantages: Can use efficient search algorithms, e.g. for

collision detection

T T

S S S S ————

Sorting: Important Properties to Investigate

How efficient is the sorting algorithm?
(Note: can depend on order of A
input data set, e.g. is it almost
sorted or completely unsorted?)

* How much memory does sorting algorithm require?

* How easy is algorithm to implement?
(for simple problems and small data sets, simple sorting
algorithm usually sufficient)

Sorting: Need a comparison operator

Any information which needs to be kept in sorted order will
involve the comparison of items (<,=,>), e.g. strings and
numbers:

ints/floats
-34<-1<0<1<245

Characters
A<B<C..<X<¥</Z
A<..< Z<a<b<c..<y<z

Strings
'Hungry' < 'Money' < ‘More’ < 'money' < 'work’

Sorting: Need a comparison operator

Any information which needs to be kept in sorted order will
have a key, the sort key (e.g., id, name, code number, ...).
The key determines the position of the individual object in
the collection.

Commonly the key is a number.

When comparing keys which are strings, the Unicode (ASCII)
values of the string are used (e.g., 'a' is Ox00061, 'A' is
Ox00041 and ' "is Ox00020).

Python sorted() function - 1

Python has an inbuilt sort function: sorted()

The sorted() function takes any iterable and returns a list
containing the sorted elements. (Note that all sequences are

iterable.)
a=1[5,2,3,1,4]
b = sorted(a)
print("a -", a)
print("b -", b)
print(b == a)
a-|[5,2,3,1,4]
b-[1, 2, 3,4, 5]
False

a=(523,1,4)
b = sorted(a)
print("a -", a)
print("b -", b)
print(b == a)
a-(5,2,3,1,4)
b-[1, 2, 3,4, 5]
False

Python sorted() function - 2

a = "bewonderful"
b = sorted(a) # sorted always returns a list

print("a -", a)
print("b -", b)
print(b == a)

a - bewonderful
b - [lbl, ldl, lel, lel, lfl, III, lnl, 'O', lrl, lul, IWI]
False

a={4:5, 29,16, 3:7}

b = sorted(a) # for dictionary sorted() returns sorted list of keys
print("a -", a) # print sorts output by keys

print("b -", b)

print(b == a)

a-{1.6,2:9,3:7,4: 5}
b-[1, 2,3, 4]
False

Python list method, sort()

. As well as the Python inbuild sorted() function, the sort()

method can be used to sort the elements of a list in place.

a=1[5,2, 3,1, 4]
print("a -", a)
a.sort()

print("a -", a)

a-|[5,2,3,1,4]
a-[1,2,3,4,595]

10

Python sorted() function, list sort()

We already have the Python sorting functions. Why bother looking at

sorting algorithms?
* |t gives us a greater understanding of how our programs work.
* Best sorting function depends on application

 Useful for developing sorting algorithms for specific applications

In particular, we are interested in how much processing it takes

to sort a collection of items (i.e., the Big O).

Also as Wikipedia says: "useful new algorithms are still being
invented, with the now widely used Timsort dating to 2002, and

the library sort being first published in 2006."
In Python, Timsort is used (for both sorted() and sort()).

11

Sorting: The Expensive Bits

* In order to sort items we will need to compare items and
swap them if they are out of order.

Number of comparisons and the number of swaps are the

costly operations in the sorting process and these affect the
efficiency of a sorting algorithm (Big O).

BEST

)

FACE SWAP

12

Sorting Considerations

An internal sort requires that the collection of data fit entirely
in the computer's main memory.

An external sort: the collection of data will not fit in the

computer's main memory all at once but must reside in
secondary storage.

For very large collections of data it is costly to create a new
structure (list) and fill it with the sorted elements so we will
look at sorting in place.

13

Sorting Considerations

One pass is defined as one trip through the data structure (or
part of the structure) comparing and, if necessary, swapping
elements along the way. (In these examples the data structure
is a list of ints.)

In these discussions we sort from smallest (on the left of the
list) to largest (on the right of the list).

14

Bubble Sort

IDEA:

Given is a list L of n value {L[O], ..., L[n-1]}

Divide list into unsorted (left) and sorted part (right — initially
empty): Unsorted: {L[0], ..., L[n-1]} Sorted: {}

In each pass compare adjacent elements and swap elements
not in correct order => largest element is “bubbled” to the
right of the unsorted part

Reduce size of unsorted part by one and increase size of
sorted part by one. After i-th pass: Unsorted: {L[0O], ..., L[n-1-i]}
Sorted: {L[n-i],...,L[n-1]}

Repeat until unsorted part has a size of 1 —then all elements

are sorted
15

Bubble Sort - Example

29 10 14 37 13
10 14 29 13 37
10 14 13 29 37
10 13 14 29 37
10 13 14 29 37

List to sort
PASS 1 (4 Comp, 3 Swap)

PASS 2 (3 Comp, 1 Swap)

PASS 3 (2 Comp, 1 Swap)

PASS 4 (1 Comp, 0 Swap)

16

Bubble Sort - Exercise

54 26 93 17 77 31 44 55 20

List to sort

PASS 1

PASS 2

PASS 3

PASS 4

PASS 5

PASS 6

PASS 7

PASS 8

17

Some Useful Python Features

def print_section(a_list, i, j):
print(i, j, a_list[i:j])

a_list =[54, 26,93, 17, 77, 31, 44, 55, 20]
for x in range(0,len(a_list),3):

print(a_list[x],end=" ") # Output: 54 17 44
print(a_list) # Output: [54, 26, 93, 17, 77, 31, 44, 55, 20]
i,j=2,5
print_section(a_list,i,j) # Output: 25[93, 17, 77]
print_section(a_list,0,9) # Output: 0 9 [54, 26, 93, 17, 77, 31, 44, 55, 20]

list[i:j] // gives the subsection of a list from index i to index j-1
range(i,j,d) // creates range of values from i to j with step size d
1,j=2,5 // parallel assignment of multiple values 18

Swapping elements

def swap1(a_list, i, j):
temp = a_list[i]
a_list[i] = a_list|[j]
a_list[j] = temp

def swap2(a_list, i, j):
a_list[i], a_list[j] = a_list[j], a_list[i]

a_list = [54, 26, 93, 17, 77]

print("before: ", a_list) # Output: [54, 26, 93, 17, 77]
swap1(a_list, 0, 4)
print("after: ", a_list) # Output: [77, 26, 93, 17, 54]
swap2(a_list, 1, 2)
print("after: ", a_list) # Output: [77, 93, 26, 17, 54]

19

Bubble Sort Code

def my_bubble_sort(a_list):
for pass_num in range(len(a_list)-1, 0, -1):
for i in range(0, pass_num):
if a_list[i] > a_list[i+1]:
a_list[i], a_list[i+1] = a_list[i+1], a_list[i]
#print(pass_num, "-", a_list) # enable to see each pass

a_list =[54, 26, 93, 17, 77, 31, 44, 55, 20]
print("before: ", a_list)
my_bubble_sort(a_list)

print("after: ", a_list)

before: [54, 26, 93,17, 77, 31, 44, 55, 20]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

20

Bubble Sort — Big O

*For a list with n elements:

The number of comparisons?

pass 1 pass 2 pass 3 ... last pass
n-1 n-2 n-3 .. 1

1+2+..+(n-3)+(n-2)+ (n-1) = %2(n?> - n)

10 times bigger means it

Big O is n? — O(nZ) takes a 100 times longer)

On average, the number of swaps is half the number of
comparisons.

21

Bubble Sort — Big O

* What if the data is already sorted?

) 10 14 32 35

5 10 14 32 35

S 10 14 32 35

5 10 14 32 35

5 10 14 32 35
Swaps?

Comparisons?

List to sort

PASS 1
PASS 2

PASS 3

PASS 4

22

Bubble Sort — Big O

 What if the data is in reverse order?

3 32 14 10 5

32 14 10 5 35

14 10 5§ 32 35

10 S 14 32 35

S 10 14 32 35
Swaps?

Comparisons?

List to sort

PASS 1
PASS 2

PASS 3

PASS 4

23

Bubble Sort — Summary

Simple to understand.

Lots of comparisons (O(n”2)) and lots of swaps each pass
(O(n"2) on average).

We can improve bubble sort. How?

Note what happens with bubble sort if it contains elements in
reverse order, e.g. [3,2,1] -> [2,3,1] -> [2,1,3] -> [1,2,3]

Can we reduce the number of swaps (assignments of values)?

24

Selection Sort

IDEA:
Given is a list L of n value {L[O], ..., L[n-1]}

Divide list into unsorted (left) and sorted part (right — initially
empty): Unsorted: {L[0], ..., L[n-1]} Sorted: {}

In each pass find largest value and place it to the right of the
unsorted part using a single swap

Reduce size of unsorted part by one and increase size of
sorted part by one. After i-th pass: Unsorted: {L[0], ..., L[n-1-i]}

Sorted: {L[n-i],...,L[n-1]}

Repeat until unsorted part has a size of 1 —then all elements
are sorted

25

Selection Sort - Example

29 10 14 37 13

29 10 14 13 37

13 10 14 29 37

13 10 14 29 37

10 13 14 29 37

List to sort

PASS 1 (4 Comp, 1 Swap)
PASS 2 (3 Comp, 1 Swap)

PASS 3 (2 Comp, 0 Swap)

PASS 4 (1 Comp, 1 Swap)

26

Selection Sort - Exercise

54 26 93 17 77 31 44 55 20

List to sort

PASS 1

PASS 2

PASS 3

PASS 4

PASS 5

PASS 6

PASS 7

PASS 8

27

Selection Sort - Exercise

11 34 26 90 37 58

10

47

36

List to sort

PASS 1
PASS 2

PASS 3
PASS 4
PASS 5
PASS 6
PASS 7
PASS 8

28

Selection Sort — swap elements

def swap_elements(a_list, i, j):
a_list[i], a_list[j] = a_list[j], a_list[i]

11 34 26 90 37 58 10 47 36

1 1

Each pass we need to swap two elements of the list. For
example, at the end of the first pass we want to swap the
element at position 3 with the element at position 8.

After the first pass:

11 34 26 36 37 58 10 47 90

T T 29

Selection Sort Code

def swap_elements(a_list, i, j):
a_list[i], a_list[j] = a_list[j], a_list[i]

def my_selection_sort(a_list):
for pass_num in range(len(a_list) -1, 0, -1):
position_largest =0

for i in range(1, pass_num+1):

if a_list[i] > a_list[position_largest]: NOTE: No check whether
position_largest = i sSwap necessary
swap_elements(a_list, position_largest, pass_num) 4——-)
#print(pass_num, "-", a_list) # enable to see each pass
a_list = [54, 26, 93, 17, 77, 31, 44, 55, 20]
print(“before: “, a_list) before: [54, 26, 93, 17, 77, 31, 44, 55, 20]
my_selection_sort(a_list) after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

print("after: ", a_list)

30

Selection Sort — Big O

For a list with n elements

The number of comparisons?

pass 1 pass 2 pass 3 ... last pass
n-1 n-2 n-3 .. 1

1+4+2+..+(n-3)+(n-2) + (n-1) = ¥%2(n?> - n)

Big O is n?> — O(n?)

Note: one swap each pass (NOTE: implementation swaps
elements even if indices are the same, i.e. no swap necessary)

31

Selection Sort — Big O

* What if the data is already sorted?

) 10 14 32 35
5 10 14 32 35
S 10 14 32 35
5 10 14 32 35
5 10 14 32 35
Swaps?

Comparisons?

List to sort

PASS 1
PASS 2

PASS 3

PASS 4

32

Selection Sort — Big O

e What if the data is in reverse order?

3 32 14 10 5
5 32 14 10 35
5 10 14 32 35
S 10 14 32 35
S 10 14 32 35
Swaps?

Comparisons?

List to sort

PASS 1
PASS 2

PASS 3

PASS 4

33

Selection Sort - Summary

Simple to understand — divide array into unsorted (left) and
sorted part (right, initially empty

Find largest value in unsorted part and place at end — after

each pass sorted part increases by one and unsorted part
reduces by one.

Unsorted part sorted part

11 34 26 10 36 37 47 58 90

Lots of comparisons O(n”2), one swap per pass (O(n))

34

Comparison Bubble Sort vs. Selection Sort

Bubble and Selection sort use the same number of
comparisons

Bubble sort does O(n) swaps per pass on average, but
Selection sort only 1 swap per pass (i.e. O(n"*2) vs. O(n) in
total)

Selection sort typically executes faster than bubble sort.

How can we do better? IDEA: Reduce number of comparisons
by inserting into sorted array

35

Insertion Sort

Sorted
A

Unsorted

A

-

IDEA:

Given is a list L of n value {L[O], ..., L[n-1]}

After i iterations

Divide list into sorted (left — initially only one element) and

sorted part (right): Sorted: {L[0]} Unsorted: {L[1], ..., L[n-1]}
In each pass take left most element from unsorted part and place

it into correct position of sorted part

Reduce size of unsorted part by one and increase size of sorted

part by one. After i-th pass: Sorted: {L[O],...,L[i]}
Unsorted: {L[i+1], ..., L[n-1-i]}

Repeat until unsorted part is an empty list — then all elements

are sorted

36

Insertion Sort - Example

29 10 14 13 18

10 29 14 13 18

10 14 29 13 18

10 13 14 29 18

10 13 14 18 29

List to sort
PASS 1 (1 Comp, 1 Shift)

PASS 2 (2 Comp, 1 Shift)

PASS 3 (3 Comp, 2 Shift)

PASS 4 (2 Comp, 1 Shift)

37

Insertion Sort - Exercise

94 26 93 17 77 31 44 55 20

List to sort

PASS 1

PASS 2

PASS 3

PASS 4

PASS 5

PASS 6

PASS 7

PASS 8

38

Insertion Sort - Exercise

35 34 26 90 37 28

10

27

36

List to sort

PASS 1
PASS 2
PASS 3

PASS 4

PASS 5
PASS 6
PASS 7

PASS 8

39

Insertion Sort — making room for the element
to be inserted

For example, to insert 10 into the sorted part of the list we need
to store 10 into a temporary variable and move all the elements
which are bigger than 10 up one position, then insert 10 into

the empty slot.
temp=10

Shift 5 list values

Insertion Sort Code

def my_insertion_sort(a_list):

for index_number in range(1, len(a_list)):
item_to_insert = a_list[lindex_number]
index = index_number - 1
while index >= 0 and a_list[index] > item_to_insert:
a_list[index + 1] = a_list[index]

index == 1

a_list[lindex + 1] = item_to_insert

#print(index_number,

a_list = [54, 26, 93, 17, 77, 31,

-", a_list) # enable to see each pass

44, 55, 20]

print("before: ", a_list)
my _insertion_sort(a_list)

before: [54, 26, 93,17, 77, 31, 44, 55, 20]
after: [17, 20, 26, 31, 44, 54, 55, 77, 93]

print("after: ", a_list)

41

Insertion Sort — Big O

For a list with n elements

The number of comparisons in the WORST CASE?

pass 1 pass 2 pass 3 last pass
1 2 3 .. h-3 n-2 n-1

1+4+2+..+(n-3)+(n-2) + (n-1) = ¥%2(n?> - n)
In the average case about half of that: Big O is n? — O(nz)

NOTE 1: Best case O(n) ... when does this occur? ©

Note 2: The number of shifts is equal or one smaller than the
number of comparisons, so same order of magnitude. "

Insertion Sort — Big O

* What if the data is already sorted?

5 10 14 32 35 List to sort
5 10 14 32 35 PASS 1
5 10 14 32 35 PASS 2
5 10 14 32 35 PASS 3
5 10 14 32 35 PASS 4

Move elements?

Comparisons?

Insertion Sort — Big O

e What if the data is in reverse order?

35 32 14 10 5
32 35 14 10 5
14 32 35 10 5
10 14 32 35 5
5 10 14 32 35

Move elements?

Comparisons?

List to sort

PASS 1
PASS 2

PASS 3

PASS 4

44

Insertion Sort —Summary

Insertion sort is a good middle-of-the-road choice for sorting
lists of a few thousand items or less.

Insertion sort is almost 40% faster than Selection sort
— on average, it does half as many comparisons
but it does more moves.

For small lists, Insertion sort is appropriate due to its simplicity.
For almost sorted lists Insertion Sortisa @00f]

MOHE

For large lists, all O(n”2) algorithms, including Insertion Sort,
are prohibitively inefficient. 45

Simple Sorting Algorithms — Summary

All sorting algorithms discussed so far had an O(n”2) average and
worst case complexity

=> |n practice for large lists usually to slow

The Timsort algorithm (written in C — not using the Python
interpreter) used by Python combines elements from
MergeSort and Insertion Sort
- Worst case and average case complexity O(n log n)
- Very fast for almost sorted lists

NOTE 1: All comparison based sorting algorithms require at
least O(n log n) time in the worst and average case

NOTE 2: In applications where writing data is expensive
Selection sort may be better. 46

Running Time Matters ©

The usefulness of an algorithm in practice depends on the data size
n and the complexity (Big O) of the algorithm (time and memory).

In general algorithms with linear, logarithmic or low polynomial
running time are acceptable
— O (log n) -
— O (n) .n
— O (n¥) where K is a small constant, :
(in many cases K <= 2 is ok)

Big-O Complexity

£ 88 38 B8

o 8 8 B

Algorithms with exponential or high T T T o

polynomial running time are often of limited use.
— O (n¥) where K is a large constant, say >3
-0 (Zn)’) (nn)

47

