COMPSCI

el

Y CompSci 105

Part 3: Hashing, Sorting and Trees
Lecturer: Burkhard Wuensche

burkhard@cs.auckland.ac.nz

Phone 373-7599 83705

Office 303-529

Office hour: Open door policy, but better contact
me to make sure I am around

The Ultimate
Driving Mac hin o [l

» Studied 3 years in Kaiserslautern
(Germany)

» PhD in Biomedical Visualization

> Research Interests:
Computer Graphics, Biomedical Imaging, Scientific Visualization, Game
Technology, Exergaming, Simulation Algorithms, Information Visualization,
Human-Computer Interfaces, Human-Robot Interfaces,Augmented and
Virtual Reality, Image-based modelling, Sketch-based modelling, CS Education

2

Burkhard Wiinsche
Graphics Group GG

Department of Computer Science
The University of Auckland, New Zealand

w=g CompSci 105
== Lecture 25-27 Content

Hashing Process

Hashing

Motivation

Hash Functions
Collision Reduction
ADT & Implementation

Textbook: Chapter 5
(section 5.2.3)

Hashing = arrange data so that it can be accessed in constant time
.. like a perfectly sorted wardrobe

4

105

COMPSCI

el

w Agenda — Hashing (Lecture 1)

» Agenda
Hashing —Why?
Load Factor
Hash Functions — folding, mid-square
Hash Functions — keys that are strings
Collisions and Collision Resolution — introduction

el

2 Why hashing?

» For unsorted data it takes O(n) time to find or delete items
(and O(1) to add items)

» For sorted data it takes O(log n) time to find items
(and O(log n) to O(n) time to add or delete items depending on
data structure)

» Is there a data structure where inserting, deleting and searching for
items is more efficient?

Using a hash table we can, on average, insert, delete and search for items
in constant time — O(l) !! ©

BUT: need extra memory, works best if size of data structure can be
predicted, “encoding” data often non-trivial [“A good hash function is
more an art than a science”], unsuitable for complex queries, e.g.“find k
largest values” or “find closest value to X", often causes problems when
using “caching” or “out of core computing”, worst case O(n) [=> Can be

exploited for denial of service attacks]
6

FIFDE

Z_ What is a Hash Table?

» A collection of items which are stored in such a way that the
items are easy to access.

» Each position (slot) in the hash table can hold one item and is
named (indexed) by an integer value starting from 0.

» Initially every slot is empty.

0 1 2 3 4 5 6 7 8 9 10 11 12

None I None | None I Mene [None l Nene I None l Nonel None | None | None I None I None I

105

FIFDE

¥ What is a Hash Function?

» Takes an item in the collection and returns a slot (i.e. an
integer).

» The hash function is the mapping between an item and the
slot where the item is stored
Ideally a hash function maps an item to a unique slot

0 1 2 3 4 5 6 7 8 9 10 11 12

None I None | None I Mene [None l Nene I None l Nonel None | None | None I None I None I

COMPSCI

il
—2= Mapping an Item into a Hash Table Slot

Example: » use a hash table of size 13
» items are integers (i.e. key is equal to item).
» Hash function is the key modulo the size m of the table

Key Hash code (slot where to store)
54 54 mod 13 = 2
26 26 mod 13 = 0
94 94 mod 13 = 3
17 17 mod 13 = 4
77 77 mod 13 = 12
31 31 mod 13 = 5

0 1 2 3 4 5 6 7 8 9 10 11 12

None None | None

| 26 | None

54 |94 |17 |31

None | None

Nonel 77 |

|This mapping uses the remainder method (i.e., key % 13). |

9

el
2_Mapping an Item into a Hash Table Slot

» A hash function takes the key (which must be unique) of an item
and returns a slot number in the hash table.

v

Typically, hash functions are more complex than just the remainder
function, and have "% table_size (m)” as part of the formula since
the resulting slot number must be within the range of the table
size, i.e. in general:

hash(item_key) = F(item_key) % m

for some function F.

v

The result of applying the hash function to the key is an index into
the table.

10

T

F_ Load Factor of the Hash Table

» The load factor (A) of the hash table is the number of items in the
table divided by the size of the table.

» The example hash table below has a load factor of

0 1 2 3 4 5 6 7 8 9 10 11 12
|26 |None 54 |94 |17 |31 None NonelNone None | None None|77 |

1

105

F_Search an Item

» Use the hash function to compute the slot of a given item and
check whether or not it is present.

» This can be done in O(1)!

» E.g. Foritem with key 14, we have 14 mod 13 = 1. Since slot 1 is
unoccupied, we conclude that 14 is not present.

0 il 2 3 4 5 6 7 8 9 10 11 12

|26 |None None None | None

54 |94 |17 |31

None | None

Nonel 77 |

12

COMPSCI

el

Z_ Collisions

» Hash function:
hash(item_key) = item_key % 13
» 6 items are mapped into the table below:

9 10 11 12
Hone | o | .u‘ 7 |

0 1 2 3 4 5 & 7 B
|2£ || |9a ‘n |:1 Im.lw.lhm

» Insert the item 44:
hash(44) =44 %13 =5

» Problem!
There is an item already in this slot!

» This is referred to as a collision (or a clash)

13

D
Z_Perfect Hash Functions

» A hash function which uniformly distributes items over the
whole hash table is a perfect hash function.

l.e.a “perfect hash function” is able to map m distinct items into a
table of size n (Zm) with no collisions

» One way to achieve this is to have a hash table which is big
enough to accommodate the full range of keys. If the keys
were eight digit student ID numbers we would need an 108
sized table (from 00000000 to 99999999)

» This is usually very inefficient and often even infeasible

14

T

..... ¥ Perfect Hash Functions

» Trying to find a perfect hash function can be very wasteful as
the number of items to be stored (and retrieved) may be
much smaller than the actual table size.

Actual key
values

We need some sort of compression from the full range of the
keys into the number of hash table slots.

15

105

F_ Good Hash Functions

» A good hash function should:
Be easy and fast to compute
Achieves even distribution of items (uniformity)

Ideally have a |:1 correspondence between the number of items
and the number of slots (i.e. size) of the hash table

» General requirements of a hash function:

The calculation of the hash function should involve the item value in
its entirety

If a hash function uses modulo arithmetic, the base should be a
prime number to help ensure even distribution of items

16

el

2Z_Hash Functions — The Folding Method

» Divides key into equal-size pieces (the last piece may not be
of equal size).
Can compute the sum of these pieces or perform some
computation on them.
» Example:
Keys are 8 digit phone numbers: 468-23496
Split into 3 numbers — 3 digits, 3 digits, and 2 digits

Find the sum of these numbers and use with hash function (%

table_size). PP o

Sum = 798
798 % 13 => 5

Note: we use all parts of the key in the calculation in case some
parts of the key are very similar (which can result in collisions).

17

e
—. Hash Functions — The Mid Square Method

» Square the key and take some portion of the result.
» Example:
Square the item
Take all digits apart from the first
Take the modulus of the remaining number with the size of the

gHaSh Functions — Keys which are Strings

[Teeimar | aseis | winary [TGesimas | aseis | winary

The ASCII table on
the right shows the
numerical
representation of
each character.

n]

b [forfa | o faf []s | -

3330008

ord('a') 1is 97

ord('b') is 98

ord('c') is 99

et e | o |2 |o

e N e e

e

19

table (13)
key key? Remove first % 13
655 429025 29025 9
Forkeys: | 654 427716 27716 0O
653 426409 26409 6

18

=2 Can we store String items?

» The ASCII values of the characters of the string can be used
to compute the slot number into which the item is mapped.
» Example:
Add the ASCII value of each character in the key
Take the modulus of the result with the size of the table (13)

key Add ASCII codes Sum % 13

For key: |"cat" 99+97+116 312 O

20

COMPSCI

COMPSCI

%Exercise 1 — Hash function for string:

Sum of ASCII codes

def hashl(key word, table_size):

def main():
print ("table size is 13")
for key wd in ["cat","dog", "god", "abracadabra", "abraabracad"] :

print (key wd, hashl(key wd, 13))

table size is 13 -

cat 0 Using the above hashing
dog 2 algorithm, which kind of keys will
god 2 cause collisions?

abracadabra 3
abraabracad 3

21

el

w Exercise 2 — Hash function for string:
A Weighted sum of ASCII codes

» Improve the previous algorithm by adding a weighting to each
character (1 for the first, 2 for the second, ...).

def hash2(key word, table size):

def main():
print("table size is 13")
for key wd in ["cat", "dog","god", "abracadabra", "abraabracad"]:

print (key wd, hash2(key wd, 13))

table size is 13
cat 4

dog 7

god 1
abracadabra-9
abraabracad 1 22

Z_Hashing — Collisions

» Perfect hash functions are hard to come by, especially if you do not
know the input keys beforehand.

» If multiple keys map to the same hash value this is called collision.

For non-perfect hash functions we need systematic way to handle
collisions (=> collision resolution)

=2 8

=)
=2

23

FIFDE

¥ Exercise 3

» Insert the following items into the hash table below and
indicate any collisions:
11,25,63,99, 12,35, 54,87,66,75,91

» Hashing function:
h(item) = item % 11

24

105

COMPSCI

A
~_ Summary

» Using a hash table we can, on average (if table large enough
and hash function suitable), insert, delete and search for items
in constant time — O(1).

v

The hash function is the mapping between an item and the
slot where the item is stored.

v

A collision occurs when an item is mapped to an occupied
slot.

v

A perfect hash function is able to map m items into a table of
size m with no collisions.

v

Perfect hash functions are hard to come by. Handling
collisions systematically is required — collision resolution.

25

e
Agenda — Hashing (Lecture 2 & 3)

» Agenda
Collisions and Collision Resolution — open addressing methods,
separate chaining
Map Abstract Data Type
Implementation of the Map Abstract Data Type
Using the [] syntax
Using the del Operator
Rehashing

26

ﬁ Hashing — Collision Resolution

» Perfect hash functions are hard to come by, especially if you do not
know the input keys beforehand.

» If multiple keys map to the same hash value this is called collision.

For non-perfect hash functions we need systematic way to handle
collisions (=> collision resolution)

» One method is to systematically find an empty slot in the table,
and put the value in this slot. This technique is called 'open
addressing'. For example, start at the original hash value position
(slot), look sequentially until you find a slot which is empty.

Look sequentially until an empty slot is found.

hash(key, 0) = key % m #may be a different hash function
hash(key, 1) = (hash(key, 0) + 1) % m
hash(key, 2) = (hash(key, 0) + 2) % m
hash(key, 3) = (hash(key, 0) + 3) % m

hash(key, i) = (hash(key, 0) + i) % m

"open addressing" refers to the fact that the location ("address") of
the item is not determined by its hash value.

The number of probes is the number of attempts made until an empty
slot position is found.

27

The probe sequence is the sequence of slots which are checked until
an available slot is found.

105

COMPSCI

el

w Collision Resolution — Linear Probing

Example:
[hash(key) = key % 13

0 1 2 3 4 5 6 7 8 9 10 11 12

| 26 | None | 54 | 94 | 17 | 31 Nonel None| None None| None | None | 77 |
44 mod13=5 Collision!
Insert keys — (5+1) mod 13 =6
44, 51 into the 51 mod 13 = 12 Collision!

— (12+1) mod 13 =0 Collision!

above hash table:
— (12+2) mod 13 =1

0 1 2 3 4 5 6 7 8 9 10 11 12
| 2 | 51

54 94 a4 None | None | None | 77

17 |31

None | None

29

el

@ Collision Resolution — Clustering

Clustering happens when regions of the table become very full and
there are long runs of filled slots. Clustering slows down
performance.

0 1 2 3 4 5 6 7 8 9 10 11 12

45 None | None | None

|26 |51 |54 |94 |17 |31

None | None

77|

clustering

Another 'open addressing' approach: instead of looking for an empty
slot sequentially, we skip slots, e.g. look at every third slot.

hash(k, i) = (hash(k, 0) + 3 *i) % m|
“plus 3 probe”

Exercise. Repeat example from last slide with a plus 3 probe. 30

Exercise: | hash(key) = key % 13

0 1 2 3 4 5 6 7 8 9 10 11 12

| 26 | None None

54 |94 |17 |31

None | Nonel None

None | None

77|

Insert keys

44,51 into the

above hash table

using the “plus 3 probe”:

31

105

ﬁ Collision Resolution — Quadratic Probing

Another method of resolving collisions using 'open
addressing”. Instead of adding 1,2,3 etc. to the first hash
result, add 12, 22, 32 etc.

hash(key , 0) = key % m #may be different
hash(key, 1) = (hash(key, 0) + 1%) % m
hash(key, 2) = (hash(key, 0) + 2%) % m
hash(key , 3) = (hash(key, 0) + 3%) % m

hash(key, i) = (hash(key , 0) + i”) % m

The probe sequence is not a sequential list of numbers
— reduces clustering

32

COMPSCI

el

w Collision Resolution — Quadratic Probing

Exercise: [hash(key) = key % 13
0 1 2 3 4 5 6 7 8 9 10 11 12
| 26 | None

None

54 |94 |17 |31

None | None | None

None | None

77|

Insert keys

44,51 into the

above hash table

using quadratic probing:

33

el

Y&/ Collision Resolution — Double Hashing

We first looked at sequential linear probing (look
sequentially until we find an empty slot).

-> prone to clustering

Improved ‘open addressing’ methods skip some slots
(e.g. "plus-3 probing“) or use non-linear probing, e.g.
guadratic probing.

- clustering reduced, but still problem if many keys map
to the same hash value

IDEA: Apply second hash function to key and use resulting
value as our skip number for probing.

-> different keys have different probing sequences, even if
initial slot was the same.

34

Example: Use these two hash [~ (key) = key % 13
functions on the table below: hash;(key) =7-key %7

0 1 2 3 4 5 6 7 8 9 10 11 12
| 26 | None

None

54 |94 |17 |31

None | None | None

None | None

77|

Inserting keys h,(43) =4 Collision
43, 25 into the h,(43) = 6 — next slot to try is 4+6=10 OK
above hash table: (probe sequence is 4, 10)
h,(25) =12 Collision
h,(25) = 3 — probe sequence is 12, 2, 5, 8 OK
0 1 2 3 4 5 6 7 8 9 10 11 12
| 26 | None | 54 | 94 | 17 | 31 Nonel 25

None None None

43 77

35

105

6 Collision Resolution — Separate Chaining

Another way of handling collisions is to use chaining where
every element of the hash table is a list and any items which
are hashed to a slot are added to the list.

If the hash function is good and if the table has a load factor
which is reasonable, the lists in each node of the hash table
will be quite small. Therefore the Big O for inserting, deleting
or searching for an item will be close to O(1).

Each element of the hash table could be a linked list or a
Python list object.

36

COMPSCI

el

@ Collision Resolution — Separate Chaining

Example: | hash(key) = key % 13 |
0 1 2 3 4 5 6 7 8 9 10 11 12
26 54 93 17 31 77

Insert the keys: 43, 69, 93, 56, 90

0 1 2 3 4 5] 6 7 8 9 10 11 12
26 54 93 17 31 77
93 43 90

69

56

37

229
Map Abstract Type
Operations of a Map ADT: key, value
key
mapl[key]

#contains a given key

The Python dictionary stores key-data pairs where the key is unique.
The key is used to look up the associated data value. The Python
dictionary is an implementation of the Map ADT. Example:
phone_ext = {'David':1410,'Brad':1137,"Sarah":2830, "Chika":1345}
phone_ext["Lia"] = 1123
print('Brad’ in phone_ext)
print(phone_ext["Sarah"])
del phone_ext["Brad"]
print(len(phone_ext)) # Output: 4

Output: True
Output: 2830

38

We will use two parallel Python lists, one for the slot numbers
corresponding to the keys and one for the associated data.
We are using linear probing to resolve collisions. Initially the

table size is 11:

— s h = HashTable()
| hash(key) = key % 11 h[54] = "cat"

0 1 2 3 4 5 6 7 8 9 10
h[26] = "dog"

slots None | None

Nnnel Nonel Nnnel None | None | None | None Nonel None

h[93] = "lion"
- h[17] = "tiger"

data I I I I I I I I h[77] = ;ﬁ:’
After all the items have been inserted: h[31] = "cow"
o 1 2 3 4 5 & 7 8 9 10 h[44] = "goat"

s 77 I |55 I 20 I 2 I 93 I 17 I Nonel Nonel 31 I 54 h[55] = "pig"

h[20] = "chicken”

0 1 2 3 4 5 6 7 8 9 10

data ‘bird' | 'goat 'dog’

pig" | ‘chick
en'

'Iinn'l 'tiger'l NoneI None

‘cow‘l ar

39

105

1. In this implementation we are
using the hash function:

I hash(key) = key % size |

def hash_function(self, key, size):
return key % size

Whenever we add an item we need to call the hash function:

Ihash_value = self.hash_function(key, len(self.slots)) I

2. We will resolve collisions using linear probing, i.e., a step size of 1.

def rehash(self, old_hash, size):
return (old_hash + 1) % size

Whenever there is a collision we need to get the next slot to try:

|next_s|ot = self.rehash(next_slot, size) |

40

10

Map ADT - An Implementation

Create the two Python lists and set the size of the mapping:

class Ha.sh.TabIe: put(key, value)
def __in !t_(self): get(key)
self.size = 11 del mapkey]
self.slots = [None] * self.size len()
self.data = [None] * self.size in #contains

#define the get() and put() methods

def hash_function(self, key, size):
return key % size

def rehash(self, old_hash, size):
return (old_hash + 1) % size

41

Map ADT - An Implementation

Getting the associated value of an entry in the hash table:

def get(self, key):
start_slot = self.hash_function(key, len(self.slots))
position = start_slot

while self.slots[position] != None:

if self.slots[position] == key: # key found
return self.data[position] # return associated data
else:
position = self.rehash(position, len(self.slots))
if position == start_slot: # all slots in hash table searched
return None # — key not in table
return None # empty slot — key not in table

42

Putting an entry (key-value pair) into the hash table:

def put(self, key, data):
hash_value = self_hash_function(key, len(self._slots))

if self.slots[hash_value] == None:
self.slots[hash_value] = key
self.data[hash_value] = data

elif self.slots[hash_value] == key:
self.data[hash_value] = data

Put the key and associated data into
the lists

| Replace the associated data l

else:
next_slot = self.rehash(hash_value, len(self.slots))
while self.slots[next_slot] != None and self.slots[next_slot] != key:
next_slot = self.rehash(next_slot, len(self.slots))

if next_slot == hash_value: Hash table full, cannot add data ‘
return
if self.slots[next_slot] == None:

Put the key and associated data into

self.slots[next_slot] = key o 5

self.data[next_slot] = data
else:
self.data[next_slot] = data

| Replace the associated data l

43

Similar to the Python dictionary data type, we want to allow
applications to use the special [] syntax, i.e.:

54] = "cat"
to assign a new mapping.

def self, key, data):
self.put(key, data) #refers to the put() method

and:
value = 54
to access the associated value in a mapping.

def self, key):
return self.get(key) #refers to the get() method

44

11

COMPSCI

e Map ADT - An Implementation

The implementation now allows the use of the [] syntax.

class HashTable:
def __init__(self):
self.size = 11
self.slots = [None] * self.size
self.data = [None] * self.size

def put(self, key, data):
def get(self, key):

def __setitem__(self, key, data):
self.put(key, data)

def __getitem__(self, key):
return self.get(key)

hash_t = HashTable()
54| = "cat"
print(54])

45

€ HashTable - Deleting a key-value pair

Deleting a value is non-trivial because of collisions (see next slides).
Case 1: key is NOT in the table:

Apply hash function. The field is either ‘None’ (we can return) or
occupied by another key. In that case we look sequentially (linear
probing) until we find an element which is ‘None’.

Example: look for hash[23], we apply the hash function and look in slot
1,theninslots 2,3, 4,5, 6, 7. Since slot 7 is 'None’ we know the key 23
is not in the table and we do not need to look any further.

0 i 2 3] 4 S 6 7 8 9 10

slots 31

None | None

54 |

0 1 2 3 4) 6 7 8 o) 10

data |'bird' 'goat| 'pig ‘dog' | 'lion' | 'tiger'| ‘cow' | 'cat'

‘chick
en'

None | None

46

Case 2: key is in the table:
Assume we wish to delete hash[55]. We apply the hash function and
look in slot 0, then we look in slots 1, 2. We find key 55 and delete it.

0 1 2 3 4 5} 6 7 8 o) 10
31 | 54 |

0 1 2 3] 4 5 6 7 8 9 10

slots 17

None | None

data |‘bird' '‘goat] none | ‘chick| 'dog' | 'lion" | 'tiger' ‘cow'| 'cat’
en'

None | None

BUT: What happens if we now wish to find key 20? (20%11=9)
Because of collisions it has been entered into slot 3. But because slot 2 is now
empty (after deleting 55), we will not find key 20 anymore.

47

105

ﬁ HashTable — Deleting a key-value pair

We will need to use a dummy value for elements which have been
deleted. In the constructor we can set self.deleted to be the Null

character. ‘self.deleted=

class HashTable:
def __init__(self):
self.size = 11
self.slots = [None] * self.size
self.data = [None] * self.size
=0

48

el

g HashTable — Deleting a key-value pair

The delete() method:

def delete(self, key):
start_slot = self.hash_function(key, len(self.slots))
position = start_slot
key_in_slot = self.slots[position]

while key in slot '= None: Will continue to search even if the slot contains
if key. i; s_lot == key: self.deleted. Only stops if slot is None.

self.slots[position] = self.deleted
self.data[position] = self.deleted
return None

else:
position = self.rehash(position, len(self.slots))
key_in_slot = self.slots[position]

if position == start_slot: ‘ Key not in table — do nothing and return

return None

49

€ HashTable - Deleting a key-value pair

The __delitem__(...) allows the use of the del operator.

def delete(self, key):

see previous slide h = HashTable()
h[54] = "cat"
def delitem__ (self, key): h[31] = "cow”
return self.delete(key) hi4d] = "goat"
del h[44]
del h[54]

50

The put() function needs to be updated to take into account self.deleted

def put(self,key,data):

hash_value = self.hash_function(key, len(self.slots))

if self.slots[hash_value] == None or \
self.slots[hash_value] == self.deleted:
self.slots[hash_value] = key
self.data[hash_value] = data

elif self.slots[hash_value] == key:
self.data[hash_value] = data

else:
next_slot = self.rehash(hash_value, len(self.slots))
while self.slots[next_slot] != None\

and self.slots[next_slot] != self.deleted \
and sel ots[next_slot] != key:
next_slot = self.rehash(next_slot, len(self.slots))
if next_slot == hash_value:
return
if self.slots[next_slot] == None or \

self.slots[next_slot] == self.deleted:
self.slots[next_slot] = key
self._data[next_slot] = data

else:

self.data[next_slot] = data

51

ﬁ The 'in' and 'len' Operators

The __len__(...) allows the use of the len operator.
The _ contains__(...) allows the use of the in operator.

def len_ (self):
count =0
for value in self.slots:
if value != None and value != self.deleted:
count += 1
return count

def contains__ (self, key):
return self.get(key) != None

COMPSCI

52

13

COMPSCI

@ Hashing Analysis

The load factor (A) of the hash table is the number of items
in the table divided by the size of the table.

If A is small then keys are more likely to be mapped to slots
where they belong and searching will be O(1).

If A is large then collisions are more likely and more
comparisons (is the slot available or not) are needed to find
an empty slot.

53

i)

& Rehashing

3

The load factor (A) of the hash table is the number of items
in the table divided by the size of the table.

If the load factor gets to high performance slows down
significantly. In that case the easiest solution is to copy the
entire hash table into a larger table (rehashing).

For separate chaining the load factor should not exceed 0.75.

For open addressing, the load factor should not exceed 0.5.

NOTE 1: Rehashing a table is expensive (since elements must
be inserted using the new hash function) — do only
occasionally, e.g. double size of table each time, but make

sure size is a prime number. \
5

56 43 30 None | None | 26 13

Rehash the above table into the hash table below using
the hash function: hash(key) = key % 13 and quadratic
probing.

55

105

14

