
COMPSCI 105 S1 2017

Principles of Computer Science

22-Recursion(3)

Agenda & Readings

 Agenda

 Radix Conversion

 The Fibonacci Sequence

 The Towers of Hanoi

 Binary Search

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 4 – Recursion

COMPSCI1052 Lecture 22

Radix Conversion

 Radix is the base of number representation

 Examples:

 Decimal, 10

 Binary, 2

 Octal, 8

 Hexadecimal, 16

Lecture 22COMPSCI1053

22.1 Radix Conversion

Decimal Binary Octal Hexadecimal

20 101002 248 1416

7 1112 78 716

32 1000002 408 2016

Radix Conversion

 Conversion by division from larger base to a smaller base

 Examples: Decimal to Octal

 735 / 8 = 91 … 7

 91 / 8 = 11 … 3

 11 / 8 = 1 … 3

 735 = 13378

Lecture 22COMPSCI1054

22.1 Radix Conversion

def Dec_to_Oct(n):

a = n // 8

b = n % 8

if (a > 0):

result = b + 10 * Oct_to_Dec(a)

else:

result = b

return result

The Fibonacci Sequence

 Describes the growth of an idealized (biologically unrealistic)

rabbit population, assuming that:

 Rabbits never die

 A rabbit reaches sexual maturity exactly two months after birth,

that is, at the beginning of its third month of life

 Rabbits are always born in male-female pairs

 At the beginning of every month, each sexually mature male-

female pair gives birth to exactly one male-female pair

Lecture 22COMPSCI1055

22.2 The Fibonacci Sequence

The Fibonacci Sequence

 Problem:

 How many pairs of rabbits are alive in month n?

 Example:

 rabbit(5) = 5

 Recurrence relation
 rabbit(n) = rabbit(n-1) + rabbit(n-2)

Lecture 22COMPSCI1056

22.2 The Fibonacci Sequence

1

2

3

4

5

Month

Recursive Definition

 Base cases

 rabbit(2), rabbit(1)

 Recursive case

 rabbit(n) = 1 if n is 1 or 2

rabbit(n-1) + rabbit(n-2) if n > 2

 Fibonacci sequence

 The series of numbers rabbit(1), rabbit(2), rabbit(3), and so on

Lecture 22COMPSCI1057

22.2 The Fibonacci Sequence

def rabbit(n):

if n <=2:

return 1

return rabbit(n-1) + rabbit(n-2)

The sequence of numbers

rabbit(n) for all n is called

Fibonacci Sequence or

Fibonacci numbers

Examples

 rabbit(6) = 8

Lecture 22COMPSCI1058

22.2 The Fibonacci Sequence

rabbit(5)

return rabbit(4)+rabbit(3)

rabbit(4)

return rabbit(3)+rabbit(2)

rabbit(3)

return rabbit(2)+rabbit(1)

rabbit(3)

return rabbit(2)+rabbit(1)
rabbit(2)

return 1

rabbit(2)

return 1

rabbit(1)

return 1

rabbit(1)

return 1
rabbit(2)

return 1

rabbit(6)

return rabbit(5)+rabbit(4)

rabbit(4)

return rabbit(3)+rabbit(2)

rabbit(3)

return rabbit(2)+rabbit(1)

rabbit(2)

return 1

rabbit(1)

return 1
rabbit(2)

return 1

1 1

2 1

3

1 1

2

5

1 1

2 1

3

8

Examples

 Fibonacci Tiling

Lecture 22COMPSCI1059

22.2 The Fibonacci Sequence

Examples

 Fibonacci Spiral

Lecture 22COMPSCI10510

22.2 The Fibonacci Sequence

The Towers of Hanoi

 Puzzle consists of n disks and three poles

 The disks are of different size and have holes to fit themselves on

the poles

 Initially all the disks were on one pole, e.g., pole A

 The task was to move the disks, one by one, from pole A to

another pole B, with the help of a spare pole C

 Due to its weight, a disks could be placed only on top of another

disk larger than itself

Lecture 22COMPSCI10511

22.3 The Towers of Hanoi

The Towers of Hanoi

 Example:

 https://www.youtube.com/watch?v=5QuiCcZKyYU

Lecture 22COMPSCI10512

22.3 The Towers of Hanoi

The Towers of Hanoi

 Solution for moving n disks from A to B

 If you have only one disk (i.e., n=1)

 Move it from pole A to pole B

 If you have more than one disk,

 Simply ignore the bottom disk and solve the problem for n-1 disk, with

pole C is the destination and pole B is the spare

 Then move the largest disk from pole A to B; then move the n-1 disks from

the pole C back to pole B

 We can use a recursion with the arguments:

 Number of disks, source pole, destination pole, spare pole

Lecture 22COMPSCI10513

22.3 The Towers of Hanoi

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10514

22.3 The Towers of Hanoi

def hanoi(count,source,destination,spare):

if count is 1:

Move a disk directly from source to destination

Move count-1 disks from source to spare

Move 1 disk from source to destination

Move count-1 disk from spare to destination

The Towers of Hanoi

 Satisfies the four criteria of a recursive solution

 Recursive method calls itself

 Each recursive call solves an identical, but smaller problem

 Stops at base case

 Base case is reached in finite time

Lecture 22COMPSCI10515

22.3 The Towers of Hanoi

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10516

22.3 The Towers of Hanoi

Case 3

hanoi(3, A, B, C)

Count: 3

Source: A

Spare: B

Dest: C

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10517

22.3 The Towers of Hanoi

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.2

hanoi(2, A, C, B)

Count: 2

Source: A

Spare: C

Dest: B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10518

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.21.1

hanoi(1, A, B, C)

Count: 1

Source: A

Spare: B

Dest: C

base case: move disk

from A to B

The Towers of Hanoi

 Examples:

Lecture 22COMPSCI10519

22.3 The Towers of Hanoi

A B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.2

hanoi(2, A, C, B)

Count: 2

Source: A

Spare: C

Dest: B

base case: move disk

from A to C

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10520

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 31.22.1

hanoi(1, B, C, A)

Count: 1

Source: B

Spare: C

Dest: A

base case: move disk

from B to C

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10521

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 3

hanoi(3, A, B, C)

Count: 3

Source: A

Spare: B

Dest: C

step2: : move disk

from A to B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10522

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.2

hanoi(2, C, B, A)

Count: 2

Source: C

Spare: B

Dest: A

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10523

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.21.1

hanoi(1, C, A, B)

Count: 2

Source: C

Spare: A

Dest: B

base case: move disk

from C to A

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10524

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.2

hanoi(2, C, B, A)

Count: 2

Source: C

Spare: B

Dest: A

step2: move disk

from C to B

 Examples:

A

The Towers of Hanoi

Lecture 22COMPSCI10525

22.3 The Towers of Hanoi

B C

def hanoi(count, source, destination, spare):

if count <= 1:

print ("base case: move disk from", source, "to", destination)

else:

hanoi(count - 1, source, spare, destination)

print ("step2: move disk from", source, "to", destination)

hanoi(count - 1, spare, destination, source)

Case 32.22.1

hanoi(1, A, B, C)

Count: 1

Source: A

Spare: B

Dest: C

base case: move disk

from A to B

Call Tree

 hanoi(3…) uses 10 calls, a top-level one and 9 recursive calls

Lecture 22COMPSCI10526

22.3 The Towers of Hanoi

hanoi(2, ‘A’, ‘C’, ‘B’)

hanoi(1, ‘A’, ‘B’, ‘C’)

Move A -> C

Move A -> B

hanoi(1, ‘B’, ‘C’, ‘A’)

hanoi(3, ‘A’, ‘B’, ‘C’)

hanoi(2, ‘C’, ‘B’, ‘A’)

hanoi(1 , ‘C’, ‘A’, ‘B’)

Move C -> B

hanoi(1, ‘A’, ‘B’, ‘C’)
A B C

A B C A B C

A B C

A B C

A B C

A B C

Binary Search

 Problem: look for an element (key) in an ordered collection

(e.g. find a word in a dictionary)

 Sequential search

 Starts at the beginning of the collection Looks at every item in the

collection in order until the item being searched for is found

 Binary search

 Repeatedly halves the collection and determines which half could

contain the item Uses a divide and conquer strategy

Lecture 22COMPSCI10527

22.4 Binary Search

Search dictionary

Search first half of dictionary Search first half of dictionary

OR

Cost?

Binary Search

 Implementation issues:

 How will you pass “half of list” to the recursive calls to

binary_search?

 How do you determine which half of the list contains value?

 What should the base case(s) be?

 How will binary_search indicate the result of the search?

 Example: a sorted list

Lecture 22COMPSCI10528

22.4 Binary Search

Binary Search

 Base case:

 If array is empty number is not in the list, or

 If element is the one we look for return it

 Recursive call

 Determine element in the middle

 If the one we look for is smaller than element in the middle then

search in the left half

 Otherwise search in the right half of the list

Lecture 22COMPSCI10529

22.4 Binary Search

0 1 2 3 4 5 6 7 8 9

Left half: [first … mid-1] Right half: [mid+1 … last]

First Last
mid = (first + last)/2

Binary Search

 Code

Lecture 22COMPSCI10530

22.4 Binary Search

def binary_search(num_list, first, last, value):

index = 0

if first > last:

index = -1

else:

mid = (first + last) // 2

if value == num_list[mid]:

index = mid

elif value < num_list[mid]:

index = binary_search(num_list, first, mid-1, value)

else:

index = binary_search(num_list, mid+1, last, value)

return index

Summary

 Understand and learn how to implement the recursive

functions for different applications

COMPSCI10531 Lecture 22

