
COMPSCI 105 S1 2017

Principles of Computer Science

21-Recursion(2)

Agenda & Readings

 Agenda

 Introduction

 Using the Python Turtle

 Recursive Drawing

 Drawing a Spiral

 Drawing a KochUp

 Drawing a C-curve

 Call Tree

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 4 – Recursion

COMPSCI1052 Lecture 21

Self-similarity

 A fractal is a rough or fragmented geometric shape that can

be split into parts, each of which is (at least approximately) a

reduced-size copy of the whole

 This a property is called self-similarity

Lecture 21COMPSCI1053

21.1 Introduction

Turtle Class

 Can be drawn using a “Turtle”

 Named after Logo programming language

 Pen location used to draw on the screen

 Commands

 Pen up

 Pen down

 Rotate …

Lecture 21COMPSCI1054

21.2 Python Turtle

1. Draw a line

2. Rotate 90 (pi/2)

3. Draw a line

4. Rotate 90 (pi/2)

5. Draw a line

6. Rotate 90 (pi/2)

Turtle Class

 Steps:

 Import the turtle module which defines the Turtle and the Screen

types

 Create and open a window

 The window contains a canvas, which is the area inside the window on

which the turtle draws

 Create a turtle object which can move forward, backwards, turn

left, turn right, the turtle can have its tail up/down

 If the tail is down, the turtle draws as it moves

 The width and colour of the turtle tail can be changed

 When the user clicks somewhere in the window, the turtle window

closes and execution of the Python program stops

Lecture 21COMPSCI1055

21.2 Python Turtle

import turtle

my_win = turtle.Screen()

tess = turtle.Turtle()

turtle.exitonclick()

Turtle Class

 Instantiate a Turtle object:

 The turtle appears as an icon

 Initial position: (0, 0)

 Initial direction: East (0°)

 Colour: black

 Line width: 1

 pixel Pen: down (ready to draw)

Lecture 21COMPSCI1056

21.2 Python Turtle

tess = turtle.Turtle()

y
-
a
x
i
s

(0,0)

90°

180° 0°

270

°

x-axis (0,0)

Methods

 forward(distance) – move the turtle forward

 backward(distance) – move the turtle backwards

 right(angle) – turn the turtle clockwise

 left(angle) – turn the turtle anti-clockwise

 up() – puts the turtle tail/pen up, i.e., no drawing

 down() – puts the turtle tail/pen down, i.e., drawing

Lecture 21COMPSCI1057

21.2 Python Turtle

Methods

 pencolor(colour_name) – changes the colour of the turtle's

tail

 heading() – returns the direction in which the turtle is

pointing

 setheading(angle) – set the direction in which the turtle is

pointing

 position() – returns the position of the turtle

 goto(x, y) – moves the turtle to position x, y

 speed(number) – set the speed of the turtle movement

Lecture 21COMPSCI1058

21.2 Python Turtle

Drawing Examples

 Examples:

Lecture 21COMPSCI1059

21.2 Python Turtle

my_win = turtle.Screen()

tess = turtle.Turtle()

tess.pencolor("hotpink")

tess.pensize(5)

tess.forward(80)

tess.pencolor("blue")

tess.left(120)

tess.forward(80)

tess.pencolor("green")

tess.left(120)

tess.forward(80)

tess.pensize(10)

tess.pencolor("magenta")

tess.left(120)

tess.right(180)

tess.up()

tess.forward(80)

tess.down()

tess.forward(80)

my_win.exitonclick()

Recursive Drawing

 In the previous section, we looked at some problems that

were easy to solve using recursion

 In this section, we will look at a couple of examples of using

recursion to draw some interesting pictures

 Drawing a spiral recursively

 Drawing a Koch Up shape

 Drawing a C Curve

Lecture 21COMPSCI10510

21.3 Python Turtle - Recursive Drawing

Drawing a Spiral

 Define the draw_spiral function

 The base case is when the length of the line is zero or less

 The recursive step: (length of the line > 0; len > 0)

 Instruct the turtle to go forward by len units, and

 Turn right 90 degrees

 Call draw_spiral again with a reduced length

Lecture 21COMPSCI10511

21.3 Python Turtle - Recursive Drawing

Forward 100

Forward 95

Forward 90

draw_spiral(my_turtle,100)

draw_spiral(my_turtle,95)

draw_spiral(my_turtle,90)

…

draw_spiral(my_turtle,0)

Drawing a Spiral

 The draw_spiral function

 Steps:

 Define the draw_spiral function

 Create a turtle

 Call the recursive function

Lecture 21COMPSCI10512

21.3 Python Turtle - Recursive Drawing

def draw_spiral(my_turtle, line_len):

if line_len > 0:

my_turtle.forward(line_len)

my_turtle.right(90)

draw_spiral(my_turtle,line_len-5)

import turtle

...

my_win = turtle.Screen()

my_turtle = turtle.Turtle()

draw_spiral(my_turtle,100)

turtle.exitonclick()

Drawing a KochUp

 Idea: recursively applying a simple rule to each of the triangles

sides

 Examples:

 The pattern:

 Cut the side (line_len) into 3 equal parts (line_len/3)

 Replace the center part with 2 sides of length line_len/3, such that it forms

a spike

 Repeat the process for each of the 4 sides, until the length of each side is

smaller than a given value.

Lecture 21COMPSCI10513

21.3 Python Turtle - Recursive Drawing

Drawing a KochUp

 Idea: recursively applying a simple rule to each of the triangles

sides

 Examples:

 The pattern:

Lecture 21COMPSCI10514

21.3 Python Turtle - Recursive Drawing

Level 0

Level 1

Level 2

Level 3

Drawing a KochUp

 Define the draw_kochup function

 The base case is when the level is zero or less:

 Instruct the turtle to go forward by line_len units

 The recursive step: (level> 0)

 Call draw_kochup again with a reduced length and a reduced level

 Turn left 60 degrees (anti-clockwise)

 Call draw_kochup again with a reduced length and a reduced level

 Turn right 120 degrees

 Call draw_kochup again with a reduced length and a reduced level

 Turn left 60 degrees (anti-clockwise)

 Call draw_kochup again with a reduced length and a reduced level

Lecture 21COMPSCI10515

21.3 Python Turtle - Recursive Drawing

Drawing a KochUp

 The draw_kochup function

Lecture 21COMPSCI10516

21.3 Python Turtle - Recursive Drawing

def draw_kockup(my_turtle, level, line_len):

if level > 0:

draw_kockup(my_turtle, level-1, line_len/3)

my_turtle.left(60)

draw_kockup(my_turtle, level-1, line_len/3)

my_turtle.right(120)

draw_kockup(my_turtle, level-1, line_len/3)

my_turtle.left(60)

draw_kockup(my_turtle, level-1, line_len/3)

else:

my_turtle.forward(line_len)

Drawing a C Curve

 A C-curve is a fractal pattern

 A level 0 C-curve is a vertical line segment

 A level 1 C-curve is obtained by bisecting a level 0 C-curve and

joining the sections at right angles

 …

 A level N C-curve is obtained by joining two level N - 1 C-curves

at right angles

Lecture 21COMPSCI10517

21.3 Python Turtle - Recursive Drawing

Drawing a C Curve

 Examples:

Lecture 21COMPSCI10518

21.3 Python Turtle - Recursive Drawing

Drawing a C Curve

 Define the draw_c_curve function

 The base case is when the level is zero or less:

 Instruct the turtle to go forward by line_len units

 The recursive step: (level> 0)

 Turn right 45 degrees

 Call draw_c_curve again with a reduced length and a reduced level

 Turn left 90 degrees

 Call draw_c_curve again with a reduced length and a reduced level

 Turn right 45 degrees

Lecture 21COMPSCI10519

21.3 Python Turtle - Recursive Drawing

Drawing a C Curve

 A call tree diagram shows the number of calls of a function

for a given argument value

 ccurve(0) uses one call, the top-level one

 ccurve(1) uses three calls, a top-level one and two recursive calls

Lecture 21COMPSCI10520

21.3 Python Turtle - Recursive Drawing

ccurve

ccurve

ccurve ccurve

Drawing a C Curve

 A call tree diagram shows the number of calls of a function

for a given argument value

 ccurve(2) uses 7 calls, a top-level one and 6 recursive calls

 ccurve(n) uses 2n+1 calls, a top-level one and 2n recursive calls

Lecture 21COMPSCI10521

21.3 Python Turtle - Recursive Drawing

ccurve

ccurve ccurve

ccurve

ccurve ccurve

ccurve

Drawing a C Curve

 The ccurve function

Lecture 21COMPSCI10522

21.3 Python Turtle - Recursive Drawing

def ccurve(my_turtle, level, line_len):

if level > 0:

my_turtle.right(45)

ccurve(my_turtle, level-1, line_len/2)

my_turtle.left(90)

ccurve(my_turtle, level-1, line_len/2)

my_turtle.right(45)

else:

my_turtle.forward(line_len)

Summary

 The application of recursion is practiced by using Python

Turtles

COMPSCI10523 Lecture 21

