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Agenda & Readings

 Agenda

 What is recursion? 

 Recursive solutions, examples:

 The Factorial of N 

 Box Trace Example 

 Write a String Backward 

 Tail Recursion

 Reference:  

 Textbook: 

 Problem Solving with Algorithms and Data Structures 

 Chapter 4 – Recursion
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Definitions

 Problem Domain:  

 The space consisting of all elements for which the problem is 

solved 

 Examples:  An array of integers, all people in this room, the days of 

the month, all “All Blacks” rugby games 

 Problem Size:  

 The number of elements of the problem domain 

 Examples:  An array with N elements, the number of people in this 

room, a list of N cities, the number of games played by the “All 

Blacks”

 GOAL: Design algorithms to solve problems! 
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20.1 Introduction



Iterative Algorithm 

 Algorithm which solves a problem by applying a function to 

each element of the problem domain

 Example: Find the tallest person in a group of N>0 students
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20.1 Introduction
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Tallest Student?

def Student FindTallestStudent(Group_of_students)

TallestStudent = Take any student from group;

Repeat until nobody left

Take next student from group

If student is taller than TallestStudent then

TallestStudent = student

Return TallestStudent



Recursion

 Recursion is a powerful problem solving technique where a 

problem is broken into smaller and smaller identical versions 

of itself until a smaller version is small enough that it has an 

obvious solution

 Note: 

 Complex problems can have simple recursive solutions It is an 

alternative to iteration (involves loops) 

 BUT: Some recursion solutions are inefficient and impractical!
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20.1 Introduction

P1
P2

…

PNA base case is a special case 
whose solution is known



Recursion

 Recursion involves a function calling itself

 Example: Find the tallest person in a group of N>0 students
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20.1 Introduction

FindTallestStudent([162,155,169,157])

FindTallestStudent([155,169,157])

FindTallestStudent([169,157])

FindTallestStudent([157])

unknown

unknown

unknown
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taller

taller
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169

169

169

def FindTallestStudent(Group of students)

If only one student in group 

return this student

else

StudentA = Take any student from group

StudentB = FindTallestStudent(Remaining Group)

return the taller person of StudentA and studentB;



Recursive Solutions

 Properties of a recursive solution 

 A recursive method calls itself 

 Each recursive call solves an identical, but smaller, problem 

 A test for the base case enables the recursive calls to stop 

 Base case: a known case in a recursive definition 

 Eventually, one of the smaller problems must be the base case 

(problem not allowed to become smaller than base case)
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20.2 Recursion



Recursive Solutions

 Four questions for constructing recursive solutions 

 How can you define the problem in terms of a smaller problem of 

the same type? 

 How does each recursive call diminish the size of the problem? 

 What instance of the problem can serve as the base case? 

 As the problem size diminishes, will you reach this base case?
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20.2 Recursion



Example – Calculate the Sum

 Get the sum by: 

 Taking the first number + the sum of the rest of the list
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20.3 Examples

recursive_sum([2, 1, 5, 6])

recursive_sum([1, 5, 6])

recursive_sum([5, 6])

recursive_sum([6])

def recursive_sum(num_list):

if len(num_list) == 0:

return 0

return num_list[0] + recursive_sum(num_list[1:])
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Example – – Bad Recursion 1

 Problem:  

 Compute the sum of all integers from 1 to n
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20.3 Examples

def bad_sum(n):

return n + bad_sum(n-1)

No base case!!!



Example – – Bad Recursion 2

 Problem:  

 If n is odd compute the sum of all odd integers from 1 to n, if it is 

even compute sum of all even integers
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20.3 Examples

def bad_sum(n):

if (n == 0):

return 0

return n + bad_sum(n-2)

Base case cannot be reached!!!



Definition

 Problem 

 Compute the factorial of an integer n >=0 

 An iterative definition of factorial(n) 

 If n = 0, factorial(0) = 1 

 If n > 0, factorial(n) = n * (n-1) * (n-2) * … * 1  

 Examples: 

 4! = 4 * 3 * 2 * 1 = 24 

 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040
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20.3 The Factorial of n

def factorial(n):

result = 1

for i in range(n, 1, -1):

result = result * i

return result



Definition

 A recurrence relation

 A mathematical formula that generates the terms in a sequence 

from previous terms

 factorial(n) = n * [(n-1) * (n-2) * … * 1]

 factorial(n) = n * factorial(n-1)   

 A recursive definition of factorial(n)

 factorial(n)  = 1, if n = 0 

n * factorial(n-1), if n > 0 
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20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)



Four Criteria

 fact(n) satisfies the four criteria of a recursive solution 

 fact(n) calls itself

 At each recursive call, the integer whose factorial to be computed 

is diminished by 1

 The methods handles the factorial 0 differently from all other 

factorials, where fact(0) is 1

 Thus the base case occurs when n is 0

 Given that n is non-negative, item 2 of this assures that the 

computation will always reach the base case
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20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)



Box Trace

 A systematic way to trace the actions of a recursive method 

 Create a new box for each recursive method call 

 Describe how return value is computed 

 Provide link to box (or boxes) for recursive method calls within the 

current method call 

 Each box corresponds to an activation record 

 Contains a method’s local environment at the time of and as a result of the 

call to the method
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20.4 Box Trace

The local environment contains: 

Value of argument, local variables, return value, 

address of calling method, …, etc.



Box Trace

 A method’s local environment includes: 

 The method’s local variables 

 A copy of the actual value arguments 

 A return address in the calling routine 

 The value of the method itself 
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20.4 Box Trace

fact(3)

n = 3

A: fact(n-1) = ?

return ?



Box Trace

 Example
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20.4 Box Trace

fact(3)

n = 3

return ? 3 * fact(2)

fact(2)

n = 2

return ? 2 * fact(1)

fact(1)

n = 1

return ? 1 * fact(0)

fact(0)

n = 0

return ? 1

1

1

2

6



Exercise 1

 Draw a call tree of the following method call: fact(4)
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Definition

 Problem: 

 Given a string of characters, write it in reverse order 

 Recursive solution: 

 Each recursive step of the solution diminishes by 1 the length of the 

string to be written backward 

 Base case: 

 Write the empty string backward 

 Examples:
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20.5 Writing a String Backward

print(writeBackward("cat"))

print(writeBackward("cat"))

tac

tac



Implementation

 Two approaches

 writeBackward(s)

 writeBackward2(s)
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20.5 Writing a String Backward

if the string s is empty:

Do nothing – base case 

else:

write the last char of s

writeBackward(s minus its last char)

if the string s is empty:

Do nothing – base case 

else:

writeBackward2(s minus its first char)

write the first char of s

call method recursively 

for the string minus the 

last character

call method recursively 

for the string minus the 

first character



Implementation

 Example
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20.5 Writing a String Backward

writeBackward("cat")

s = “cat”, write t

writeBackward("ca")

writeBackward("ca")

s = “ca”, write a

writeBackward("c")

writeBackward("c")

s = “c”, write c

writeBackward("")

writeBackward("")

s = “”

return

t

ta

tac



Implementation

 Example
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20.5 Writing a String Backward

writeBackward2("cat")

s = “cat”

writeBackward2(“at"), write c 

writeBackward2(“at")

s = “at”

writeBackward2(“t"), write a

writeBackward2(“t")

s = “t” 

writeBackward2(""), write t

writeBackward2("")

s = “”

return

t

ta

tac



Summary

 A recursive algorithm passes the buck repeatedly to the same 

function

 Recursive algorithms are well-suited for solving problems in 

domains that exhibit recursive patterns

 Recursive strategies can be used to simplify complex 

solutions to difficult problems
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