
COMPSCI 105 S1 2017

Principles of Computer Science

20-Recursion(1)

Agenda & Readings

 Agenda

 What is recursion?

 Recursive solutions, examples:

 The Factorial of N

 Box Trace Example

 Write a String Backward

 Tail Recursion

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 4 – Recursion

Lecture 20COMPSCI1052

Definitions

 Problem Domain:

 The space consisting of all elements for which the problem is

solved

 Examples: An array of integers, all people in this room, the days of

the month, all “All Blacks” rugby games

 Problem Size:

 The number of elements of the problem domain

 Examples: An array with N elements, the number of people in this

room, a list of N cities, the number of games played by the “All

Blacks”

 GOAL: Design algorithms to solve problems!

Lecture 20COMPSCI1053

20.1 Introduction

Iterative Algorithm

 Algorithm which solves a problem by applying a function to

each element of the problem domain

 Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1054

20.1 Introduction

163
157 155

162
169

Tallest Student?

def Student FindTallestStudent(Group_of_students)

TallestStudent = Take any student from group;

Repeat until nobody left

Take next student from group

If student is taller than TallestStudent then

TallestStudent = student

Return TallestStudent

Recursion

 Recursion is a powerful problem solving technique where a

problem is broken into smaller and smaller identical versions

of itself until a smaller version is small enough that it has an

obvious solution

 Note:

 Complex problems can have simple recursive solutions It is an

alternative to iteration (involves loops)

 BUT: Some recursion solutions are inefficient and impractical!

Lecture 20COMPSCI1055

20.1 Introduction

P1
P2

…

PNA base case is a special case
whose solution is known

Recursion

 Recursion involves a function calling itself

 Example: Find the tallest person in a group of N>0 students

Lecture 20COMPSCI1056

20.1 Introduction

FindTallestStudent([162,155,169,157])

FindTallestStudent([155,169,157])

FindTallestStudent([169,157])

FindTallestStudent([157])

unknown

unknown

unknown

taller

taller

taller

157

169

169

169

def FindTallestStudent(Group of students)

If only one student in group

return this student

else

StudentA = Take any student from group

StudentB = FindTallestStudent(Remaining Group)

return the taller person of StudentA and studentB;

Recursive Solutions

 Properties of a recursive solution

 A recursive method calls itself

 Each recursive call solves an identical, but smaller, problem

 A test for the base case enables the recursive calls to stop

 Base case: a known case in a recursive definition

 Eventually, one of the smaller problems must be the base case

(problem not allowed to become smaller than base case)

Lecture 20COMPSCI1057

20.2 Recursion

Recursive Solutions

 Four questions for constructing recursive solutions

 How can you define the problem in terms of a smaller problem of

the same type?

 How does each recursive call diminish the size of the problem?

 What instance of the problem can serve as the base case?

 As the problem size diminishes, will you reach this base case?

Lecture 20COMPSCI1058

20.2 Recursion

Example – Calculate the Sum

 Get the sum by:

 Taking the first number + the sum of the rest of the list

Lecture 20COMPSCI1059

20.3 Examples

recursive_sum([2, 1, 5, 6])

recursive_sum([1, 5, 6])

recursive_sum([5, 6])

recursive_sum([6])

def recursive_sum(num_list):

if len(num_list) == 0:

return 0

return num_list[0] + recursive_sum(num_list[1:])

6

11

12

14

5+

1+

2+

6+

0

Example – – Bad Recursion 1

 Problem:

 Compute the sum of all integers from 1 to n

Lecture 20COMPSCI10510

20.3 Examples

def bad_sum(n):

return n + bad_sum(n-1)

No base case!!!

Example – – Bad Recursion 2

 Problem:

 If n is odd compute the sum of all odd integers from 1 to n, if it is

even compute sum of all even integers

Lecture 20COMPSCI10511

20.3 Examples

def bad_sum(n):

if (n == 0):

return 0

return n + bad_sum(n-2)

Base case cannot be reached!!!

Definition

 Problem

 Compute the factorial of an integer n >=0

 An iterative definition of factorial(n)

 If n = 0, factorial(0) = 1

 If n > 0, factorial(n) = n * (n-1) * (n-2) * … * 1

 Examples:

 4! = 4 * 3 * 2 * 1 = 24

 7! = 7 * 6 * 5 * 4 * 3 * 2 * 1 = 5040

Lecture 20COMPSCI10512

20.3 The Factorial of n

def factorial(n):

result = 1

for i in range(n, 1, -1):

result = result * i

return result

Definition

 A recurrence relation

 A mathematical formula that generates the terms in a sequence

from previous terms

 factorial(n) = n * [(n-1) * (n-2) * … * 1]

 factorial(n) = n * factorial(n-1)

 A recursive definition of factorial(n)

 factorial(n) = 1, if n = 0

n * factorial(n-1), if n > 0

Lecture 20COMPSCI10513

20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)

Four Criteria

 fact(n) satisfies the four criteria of a recursive solution

 fact(n) calls itself

 At each recursive call, the integer whose factorial to be computed

is diminished by 1

 The methods handles the factorial 0 differently from all other

factorials, where fact(0) is 1

 Thus the base case occurs when n is 0

 Given that n is non-negative, item 2 of this assures that the

computation will always reach the base case

Lecture 20COMPSCI10514

20.3 The Factorial of n

def fact (n):

if n <= 0:

return 1

return n * fact(n-1)

Box Trace

 A systematic way to trace the actions of a recursive method

 Create a new box for each recursive method call

 Describe how return value is computed

 Provide link to box (or boxes) for recursive method calls within the

current method call

 Each box corresponds to an activation record

 Contains a method’s local environment at the time of and as a result of the

call to the method

Lecture 20COMPSCI10515

20.4 Box Trace

The local environment contains:

Value of argument, local variables, return value,

address of calling method, …, etc.

Box Trace

 A method’s local environment includes:

 The method’s local variables

 A copy of the actual value arguments

 A return address in the calling routine

 The value of the method itself

Lecture 20COMPSCI10516

20.4 Box Trace

fact(3)

n = 3

A: fact(n-1) = ?

return ?

Box Trace

 Example

Lecture 20COMPSCI10517

20.4 Box Trace

fact(3)

n = 3

return ? 3 * fact(2)

fact(2)

n = 2

return ? 2 * fact(1)

fact(1)

n = 1

return ? 1 * fact(0)

fact(0)

n = 0

return ? 1

1

1

2

6

Exercise 1

 Draw a call tree of the following method call: fact(4)

Lecture 20COMPSCI10518

Definition

 Problem:

 Given a string of characters, write it in reverse order

 Recursive solution:

 Each recursive step of the solution diminishes by 1 the length of the

string to be written backward

 Base case:

 Write the empty string backward

 Examples:

Lecture 20COMPSCI10519

20.5 Writing a String Backward

print(writeBackward("cat"))

print(writeBackward("cat"))

tac

tac

Implementation

 Two approaches

 writeBackward(s)

 writeBackward2(s)

Lecture 20COMPSCI10520

20.5 Writing a String Backward

if the string s is empty:

Do nothing – base case

else:

write the last char of s

writeBackward(s minus its last char)

if the string s is empty:

Do nothing – base case

else:

writeBackward2(s minus its first char)

write the first char of s

call method recursively

for the string minus the

last character

call method recursively

for the string minus the

first character

Implementation

 Example

Lecture 20COMPSCI10521

20.5 Writing a String Backward

writeBackward("cat")

s = “cat”, write t

writeBackward("ca")

writeBackward("ca")

s = “ca”, write a

writeBackward("c")

writeBackward("c")

s = “c”, write c

writeBackward("")

writeBackward("")

s = “”

return

t

ta

tac

Implementation

 Example

Lecture 20COMPSCI10522

20.5 Writing a String Backward

writeBackward2("cat")

s = “cat”

writeBackward2(“at"), write c

writeBackward2(“at")

s = “at”

writeBackward2(“t"), write a

writeBackward2(“t")

s = “t”

writeBackward2(""), write t

writeBackward2("")

s = “”

return

t

ta

tac

Summary

 A recursive algorithm passes the buck repeatedly to the same

function

 Recursive algorithms are well-suited for solving problems in

domains that exhibit recursive patterns

 Recursive strategies can be used to simplify complex

solutions to difficult problems

Lecture 20COMPSCI10523

