
COMPSCI 105 S1 2017

Principles of Computer Science

19 Linked List(3)

Agenda & Readings

 Agenda

 Variations of Linked Lists

 Singly Linked Lists with Head and Tail

 Doubly Linked Lists with Dummy head node

 Reference:

 Textbook:

 Problem Solving with Algorithms and Data Structures

 Chapter 3 – Lists

 Chapter 3 –The UnorderedList Abstract Data Type

 Extra Reading:

 http://en.literateprograms.org/Singly_linked_list_(Python)

Lecture 19COMPSCI1052

http://en.literateprograms.org/Singly_linked_list_(Python)

Singly Linked List with Head and Tail

 In some singly linked list implementations, it is handy to have

a reference to the last node of the list

 Allow more efficient access (i.e. insertion) at the end of Linked List

 Useful for queue-like structure, e.g. a waiting list

Lecture 19

19.1 Singly Linked Lists

COMPSCI1053

Singly Linked List with Head and Tail

 Cases:

 Insertion

 General case:

 Insert a new node to the beginning of a list

 Insert a new node to the end of a list

 Insert a new node to the middle of a list

 An empty list:

 Insert a new node to an empty list

Lecture 19

19.1 Singly Linked Lists

COMPSCI1054

Singly Linked List with Head and Tail

 Cases:

 Deletion

 General case:

 Remove a node at the beginning of a list

 Remove a node at the end of a list

 Remove a node from the middle of a list

 Only one node left in the list:

 Remove the only one node from a list

Lecture 19

19.1 Singly Linked Lists

COMPSCI1055

Singly Linked List with Head and Tail

 Case 1:

 Add to head Original linked list: [5, -1, 16, 2]

 Case 2:

 Add to tail Original linked list: [5, -1, 16, 2]

Lecture 19

19.1 Singly Linked Lists

COMPSCI1056

my_list.add_to_head(100)

for num in my_list:

print(num, end=" ")

100 5 -1 16 2

my_list.add_to_tail(200)

for num in my_list:

print(num, end=" ")

5 -1 16 2 200

Singly Linked List with Head and Tail

 Case 3:

 Remove from head Original linked list: [8, 5, -1, 16, 2]

 Case 4:

 Remove from tail Original linked list: [5, -1, 16, 2, 7]

Lecture 19

19.1 Singly Linked Lists

COMPSCI1057

my_list.remove_from_head()

for num in my_list:

print(num, end=" ")

5 -1 16 2

my_list.remove_from_tail

for num in my_list:

print(num, end=" ")

5 -1 16 2

Inserting a Node

 Add an item to the end of the Linked List:

 General case: (non-empty list)

 Steps:

 Create a new node and place the item as its data

 Change the next reference of the old last node of the list to refer to the

new node

 Modify the tail to refer to the new node

 Increase the count

Lecture 19

19.1 Singly Linked Lists

COMPSCI1058

new_node = Node(item)

self.tail.set_next(new_node)

self.tail = new_node

self.count += 1

Count: 4 Head Tail
1 1

2
1

2
4

5

3

34

Inserting a Node

 Add an item to an empty Linked List:

 Special case: (empty list)

 Steps:

 Create a new node and place the item as its data

 Change both the head and tail to refer to the new node

 Increase the count

Lecture 19

19.1 Singly Linked Lists

COMPSCI1059

new_node = Node(item)

self.head = new_node

if self.tail == None:

self.tail = new_node

self.count += 1

Count: 0 Head Tail

1

1
2

1

2

4

1

3
3

4

Deleting a Node

 Remove an item from the end of the Linked List:

 General case (non-empty list):

 Steps:

 Locate the previous node

 Modify the next of the pervious node to None

 Modify the tail to refer to the previous node

 Decrease the count

Lecture 19

19.1 Singly Linked Lists

COMPSCI10510

prev = self.head

while (prev.get_next() != self.tail):

prev = prev.get_next()

prev.set_next(None)

self.tail = prev

self.count -= 1

1

2

Count: 4 Head Tail

prev 4
1

3

35

2

5

3
4

Deleting a Node

 Remove a node from a list with one element

 Steps:

 Modify the head and tail to refer to None

 Decrease the count

Lecture 19

19.1 Singly Linked Lists

COMPSCI10511

self.head = self.head.get_next()

if self.head == None:

self.tail = None

self.count -= 1

1
Count: 1 Head Tail03

2

31

21

Time Complexity

 Summary

Lecture 19

19.1 Singly Linked Lists

COMPSCI10512

Python List Singly Linked List

is_empty O(1) : if len(my_list) == 0 O(1)

size O(1) : len(my_list) O(1) with count variable

O(n) with count variable

addTohead O(n) : insert(0, item) O(1)

addToTail O(1) : append O(1) with tail reference

O(n) without tail

add O(n) : insert(index, item) O(n)

removeFromHead O(n) : pop(0) O(1)

removeFromTail O(1) : pop() O(n) even with tail

remove O(n) : pop(n) O(n)

Examples

 A singly linked list with head and tail references:

Lecture 19

19.1 Singly Linked Lists

COMPSCI10513

my_list = LinkedList()

my_list.add_to_head(8)

my_list.add_to_head(6)

my_list.add_to_head(4)

my_list.add_to_head(2)

my_list.remove_from_tail()

my_list.add_to_tail(9)

my_list.remove_from_head()

my_list.add_to_head(1)

1 9

Exercise 1

 What is the output of the following program?

Lecture 19COMPSCI10514

my_list = LinkedList()

for x in [9, 2, 22, 40]:

my_list.add_to_head(x)

my_list.remove_from_tail()

my_list.add_to_tail(32)

my_list.remove_from_head()

my_list.remove_from_head()

my_list.add_to_head(100)

for num in my_list:

print(num, end=" ")

Doubly Linked List

 A common variation on linked lists is to have two pointers to

other nodes within each node:

 One to the next node on the list

 One to the previous node

 Doubly-linked lists make some operations, such as deleting a

tail node, more efficient

 Double-linked lists can have iterators for efficient forward

and backward traversals

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10515

Doubly Linked List

 Each NodeDLL references both its predecessor and its

successor

 Each object in a doubly linked list will contain three member

variables:

 data: value stored in this node

 next: refers to the next node in the list

 prev: refers to the previous node in the list

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10516

xi

nextprev

data

class NodeDLL:

def __init__(self, init_data, next_node=None, prev_node=None):

…

NodeDLL Class

 Code:

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10517

class NodeDLL:

def __init__(self, init_data, next_node=None, prev_node=None):

…

def get_data(self):

return self.data

def get_prev(self):

return self.prev

def get_next(self):

return self.next

def set_data(self, new_data):

self.data = new_data

def set_next(self, new_next):

self.next = new_next

def set_prev(self, new_prev):

self.prev = new_prev

…

Doubly Linked List

 Doubly Linked List

 A head reference is used to reference the first node in the list

 A tail reference points to the last node.

 Examples:

 A doubly linked list with 4 nodes:

 An Empty list:

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10518

12 36 47 57head

tail

head tail

Inserting a Node

 Add an item to the middle of the Linked List:

 General case: (non-empty list)

 Steps:

 Create a new node and place the item as its data

 Set the next of the new node to refer to the curr

 Set the prev of the new node to refer to the previous node of curr

 Modify the prev of the curr node to refer to the new node

 Modify the next of the node that is to precede the new node to refer to

the new node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10519

12 36 47 57

curr27

def add_before(self, item, curr):

new_node = NodeDLL(item, curr, curr.get_prev())

curr.set_prev(new_node)

new_node.get_prev().set_next(new_node)

1
2
3

 Add an item to the Linked List:

 However, we still need to handle insertion in different cases:

 Case 1: an empty list

 Case 2: at the beginning of the list

 Case 3: at the end of the list

Inserting a Node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10520

head 27

12 36head

27 curr

12 36

27 curr

Deleting a Node

 Remove an item from the middle of the Linked List:

 General case: (non-empty list)

 Steps:

 Modify the next of the node that precede curr so that it refers to the node

that follows curr

 Modify the prev of the node that follows curr so that it refers to the node

that precedes curr

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10521

36 47 57

curr

def remove(self, curr):

curr.get_prev().set_next(curr.get_next())

curr.get_next().set_prev(curr.get_prev())
1
2

 Remove an item from the the Linked List

 However, we still need to handle insertion in different cases:

 Case 1: One element

 Case 2: at the beginning of the list

 Case 3: at the end of the list

Deleting a Node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10522

27

47 57head

curr

47 57

curr

head

 How can we simplify the implementation?

 Use Circular doubly linked list with a dummy head node

 The prev of the dummy head node refers to the last node

 The next of the last node refers to the dummy head node

 Eliminates special cases for insertions and deletions

 Dummy head node is always present, even when the linked list is

empty

Circular + Dummy Head Node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10523

 Inserting a Node

 At the beginning:

 At the end:

Circular + Dummy Head Node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10524

37 57

27 curr

12 47

57 curr

...

 Deleting a Node

 At the beginning:

 At the end:

Circular + Dummy Head Node

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10525

12 36 47

curr

...

47 57 12

curr

...

Time Complexity

 Summary

Lecture 19

19.2 Doubly Linked Lists

COMPSCI10526

Python List Singly Linked List Circular Doubly with

a dummy head

is_empty O(1) O(1) O(1)

size O(1) O(1) with count O(1) with count

addTohead O(n) O(1) O(1)

addToTail O(1) O(1) with tail

O(n) without

O(1)

add O(n) O(n) O(n)

Exercise 2

 Consider the following code fragment

Lecture 19COMPSCI10527

from LinkedListDLL import LinkedListDLL

def Test_DoublyLinkedlist():

my_list.add_to_tail('b')

my_list.add_to_tail('c')

my_list.add_to_head('a')

my_list.add_to_tail('d')

my_list.add_to_tail('e')

Exercise 2

 Consider the following code fragment

 Draw the resulting doubly linked list in the space provided

Lecture 19COMPSCI10528

from LinkedListDLL import LinkedListDLL

def Test_DoublyLinkedlist():

my_list.add_to_tail(2)

my_list.add_to_tail(4)

my_list.add_to_head(6)

my_list.add_to_tail(8)

Summary

 Understand and learn how to implement the singly linked-list

 Understand and learn how to implement the doubly linked-

list

Lecture 19COMPSCI10529

