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Agenda & Readings

 Agenda

 Variations of Linked Lists

 Singly Linked Lists with Head and Tail

 Doubly Linked Lists with Dummy head node

 Reference:  

 Textbook: 

 Problem Solving with Algorithms and Data Structures 

 Chapter 3 – Lists 

 Chapter 3 –The UnorderedList Abstract Data Type

 Extra Reading:

 http://en.literateprograms.org/Singly_linked_list_(Python)
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http://en.literateprograms.org/Singly_linked_list_(Python)


Singly Linked List with Head and Tail

 In some singly linked list implementations, it is handy to have 

a reference to the last node of the list

 Allow more efficient access (i.e. insertion) at the end of Linked List 

 Useful for queue-like structure, e.g. a waiting list
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Singly Linked List with Head and Tail

 Cases: 

 Insertion  

 General case: 

 Insert a new node to the beginning of a list 

 Insert a new node to the end of a list 

 Insert a new node to the middle of a list 

 An empty list: 

 Insert a new node to an empty list 
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Singly Linked List with Head and Tail

 Cases: 

 Deletion

 General case: 

 Remove a node at the beginning of a list

 Remove a node at the end of a list

 Remove a node from the middle of a list

 Only one node left in the list: 

 Remove the only one node from a list
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Singly Linked List with Head and Tail

 Case 1:  

 Add to head Original linked list: [5, -1, 16, 2]

 Case 2: 

 Add to tail Original linked list: [5, -1, 16, 2]
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my_list.add_to_head(100)

for num in my_list:

print(num, end=" ")

100 5 -1 16 2

my_list.add_to_tail(200)

for num in my_list:

print(num, end=" ")

5 -1 16 2 200



Singly Linked List with Head and Tail

 Case 3:

 Remove from head Original linked list: [8, 5, -1, 16, 2]

 Case 4:

 Remove from tail Original linked list: [5, -1, 16, 2, 7]
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my_list.remove_from_head()

for num in my_list:

print(num, end=" ")

5 -1 16 2

my_list.remove_from_tail

for num in my_list:

print(num, end=" ")

5 -1 16 2



Inserting a Node

 Add an item to the end of the Linked List: 

 General case: (non-empty list)

 Steps: 

 Create a new node and place the item as its data 

 Change the next reference of the old last node of the list to refer to the 

new node 

 Modify the tail to refer to the new node 

 Increase the count
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new_node = Node(item)

self.tail.set_next(new_node)

self.tail = new_node

self.count += 1

Count: 4   Head       Tail
1 1

2
1

2
4

5

3

34



Inserting a Node

 Add an item to an empty Linked List: 

 Special case: (empty list)

 Steps: 

 Create a new node and place the item as its data 

 Change both the head and tail to refer to the new node 

 Increase the count
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new_node = Node(item)

self.head = new_node

if self.tail == None:

self.tail = new_node

self.count += 1

Count: 0   Head       Tail

1

1
2

1

2

4

1

3
3

4



Deleting a Node

 Remove an item from the end of the Linked List: 

 General case (non-empty list):

 Steps: 

 Locate the previous node 

 Modify the next of the pervious node to None 

 Modify the tail to refer to the previous node 

 Decrease the count
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prev = self.head

while (prev.get_next() != self.tail):

prev = prev.get_next()

prev.set_next(None)

self.tail = prev

self.count -= 1

1

2

Count: 4   Head       Tail

prev 4
1

3

35

2

5

3
4



Deleting a Node

 Remove a node from a list with one element

 Steps: 

 Modify the head and tail to refer to None

 Decrease the count
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self.head = self.head.get_next()

if self.head == None:

self.tail = None

self.count -= 1

1
Count: 1  Head       Tail03

2

31

21



Time Complexity

 Summary
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Python List Singly Linked List

is_empty O(1) : if len(my_list) == 0 O(1)

size O(1) : len(my_list) O(1) with count variable

O(n) with count variable

addTohead O(n) : insert(0, item) O(1)

addToTail O(1) : append O(1) with tail reference

O(n) without tail

add O(n) : insert(index, item) O(n)

removeFromHead O(n) : pop(0) O(1)

removeFromTail O(1) : pop() O(n) even with tail

remove O(n) : pop(n) O(n)



Examples

 A singly linked list with head and tail references:

Lecture 19

19.1 Singly Linked Lists 

COMPSCI10513

my_list = LinkedList()

my_list.add_to_head(8)

my_list.add_to_head(6)

my_list.add_to_head(4)

my_list.add_to_head(2)

my_list.remove_from_tail()

my_list.add_to_tail(9)

my_list.remove_from_head()

my_list.add_to_head(1)

1 9



Exercise 1

 What is the output of the following program?
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my_list = LinkedList()

for x in [9, 2, 22, 40]:

my_list.add_to_head(x)

my_list.remove_from_tail()

my_list.add_to_tail(32)

my_list.remove_from_head()

my_list.remove_from_head()

my_list.add_to_head(100)

for num in my_list:

print(num, end=" ")



Doubly Linked List

 A common variation on linked lists is to have two pointers to 

other nodes within each node: 

 One to the next node on the list

 One to the previous node

 Doubly-linked lists make some operations, such as deleting a 

tail node, more efficient

 Double-linked lists can have iterators for efficient forward

and backward traversals
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Doubly Linked List

 Each NodeDLL references both its predecessor and its 

successor

 Each object in a doubly linked list will contain three member 

variables: 

 data: value stored in this node 

 next: refers to the next node in the list 

 prev: refers to the previous node in the list
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xi

nextprev

data

class NodeDLL:

def __init__(self, init_data, next_node=None, prev_node=None):

…



NodeDLL Class

 Code:
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class NodeDLL:

def __init__(self, init_data, next_node=None, prev_node=None):

…

def get_data(self):

return self.data

def get_prev(self):

return self.prev

def get_next(self):

return self.next

def set_data(self, new_data):

self.data = new_data

def set_next(self, new_next):

self.next = new_next

def set_prev(self, new_prev):

self.prev = new_prev

…



Doubly Linked List

 Doubly Linked List 

 A head reference is used to reference the first node in the list

 A tail reference points to the last node.

 Examples: 

 A doubly linked list with 4 nodes:

 An Empty list:
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12 36 47 57head

tail

head tail



Inserting a Node

 Add an item to the middle of the Linked List: 

 General case: (non-empty list)    

 Steps: 

 Create a new node and place the item as its data

 Set the next of the new node to refer to the curr

 Set the prev of the new node to refer to the previous node of curr

 Modify the prev of the curr node to refer to the new node 

 Modify the next of the node that is to precede the new node to refer to 

the new node
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12 36 47 57

curr27

def add_before(self, item, curr):

new_node = NodeDLL(item, curr, curr.get_prev())

curr.set_prev(new_node)

new_node.get_prev().set_next(new_node)

1
2
3



 Add an item to the Linked List: 

 However, we still need to handle insertion in different cases: 

 Case 1: an empty list  

 Case 2: at the beginning of the list    

 Case 3: at the end of the list

Inserting a Node
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head 27

12 36head

27 curr

12 36

27 curr



Deleting a Node

 Remove an item from the middle of the Linked List: 

 General case: (non-empty list)

 Steps: 

 Modify the next of the node that precede curr so that it refers to the node 

that follows curr

 Modify the prev of the node that follows curr so that it refers to the node 

that precedes curr
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36 47 57

curr

def remove(self, curr):

curr.get_prev().set_next(curr.get_next())

curr.get_next().set_prev(curr.get_prev())
1
2



 Remove an item from the the Linked List 

 However, we still need to handle insertion in different cases: 

 Case 1:  One element   

 Case 2: at the beginning of the list    

 Case 3: at the end of the list

Deleting a Node
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27

47 57head

curr

47 57

curr

head



 How can we simplify the implementation? 

 Use Circular doubly linked list with a dummy head node

 The prev of the dummy head node refers to the last node 

 The next of the last node refers to the dummy head node     

 Eliminates special cases for insertions and deletions 

 Dummy head node is always present, even when the linked list is 

empty

Circular + Dummy Head Node
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 Inserting a Node

 At the beginning:

 At the end:

Circular + Dummy Head Node
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37 57

27 curr

12 47

57 curr

...



 Deleting a Node

 At the beginning:

 At the end:

Circular + Dummy Head Node
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12 36 47

curr

...

47 57 12

curr

...



Time Complexity

 Summary

Lecture 19

19.2 Doubly Linked Lists 

COMPSCI10526

Python List Singly Linked List Circular Doubly with 

a dummy head

is_empty O(1) O(1) O(1)

size O(1) O(1) with count O(1) with count

addTohead O(n) O(1) O(1)

addToTail O(1) O(1) with tail

O(n) without

O(1)

add O(n) O(n) O(n)



Exercise 2

 Consider the following code fragment

Lecture 19COMPSCI10527

from LinkedListDLL import LinkedListDLL

def Test_DoublyLinkedlist():

my_list.add_to_tail('b')

my_list.add_to_tail('c')

my_list.add_to_head('a')

my_list.add_to_tail('d')

my_list.add_to_tail('e')



Exercise 2

 Consider the following code fragment

 Draw the resulting doubly linked list in the space provided
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from LinkedListDLL import LinkedListDLL

def Test_DoublyLinkedlist():

my_list.add_to_tail(2)

my_list.add_to_tail(4)

my_list.add_to_head(6)

my_list.add_to_tail(8)



Summary

 Understand and learn how to implement the singly linked-list

 Understand and learn how to implement the doubly linked-

list
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