
COMPSCI 105 S1 2017
Principles of Computer Science

13 Stack (1)

Agenda & Readings

Agenda
Introduction
The Stack Abstract Data Type (ADT)
Two implementations of Stack
Reference:

Textbook: Problem Solving with Algorithms and Data Structures
Chapter 3: Basic Data Structures

Lecture 13COMPSCI1052

Linear Structures

Linear structures are data collections whose items are
ordered depending on how they are added or removed
from the structure
Once an item is added, it stays in that position relative to
the other elements that came before and came after it
Linear structures can be thought of as having two ends, top
and bottom, (or front and end or front and back)
What distinguishes one linear structure from another is the
way in which items are added and removed, in particular the
location where these additions and removals occur, e.g., add
only to one end, add to both, etc.

Lecture 13COMPSCI1053

13.1 Introduction

What is a Stack?

A stack is an ordered collection of items where the addition
of new items and the removal of existing items always takes
place at the same end, referred to as the top of the stack

i.e. add at top, remove from top

Last-in, first-out (LIFO) property
The last item placed on the stack will be the first item removed

Example:
A stack of dishes in a cafeteria

Lecture 13COMPSCI1054

13.1 Introduction

Stack Example

Add only to the top of a Stack
Remove only from the top of the Stack

Note: The last item placed on the stack will be the first item
removed

Lecture 13COMPSCI1055

13.1 Introduction

34

57

12

34

57

12

103

34

57

12

34

57

Remove
the top
element

Add a
new

element

Remove
the top
element

Last In - First Out (LIFO)

Orders

The base of the stack contains the oldest item, the one
which has been there the longest
For a stack the order in which items are removed is exactly
the reverse of the order that they were placed

Lecture 13COMPSCI1056

13.1 Introduction

ADT Stack Operations

What are the operations which can be used with a Stack
Abstract Data?

Create an empty stack
Determine whether a stack is empty
Add a new item to the stack

push

Remove from the stack the item that was added most recently
pop

Retrieve from the stack the item that was added most recently
peek

Lecture 13COMPSCI1057

13.1 Introduction

ADT Stack Operations

What are the operations which can be used with a Stack
Abstract Data?

Lecture 13COMPSCI1058

13.1 Introduction

34

57

12

Retrieve
the top
element

34

57

12

12

34

57

12

103

Add a
new

element

103

34

57

12

Remove
the top
element

12

The Stack Abstract Data Type

Stack() creates a new stack that is empty
It needs no parameters and returns an empty stack

push(item) adds a new item to the top of the stack
It needs the item and returns nothing
The stack is modified

pop() removes the top item from the stack
It needs no parameters and returns the item
The stack is modified

Lecture 13COMPSCI1059

13.2 The Stack Abstract Data Type

Stack(), push(item) and pop() are critical
operations in order to manipulate the elements
of the stack

The Stack Abstract Data Type

peek() returns the top item from the stack but does not
remove it

It needs no parameters
The stack is not modified

is_empty() tests to see whether the stack is empty
It needs no parameters and returns a Boolean value
The stack is not modified

size() returns the number of items on the stack
It needs no parameters and returns an integer
The stack is not modified

Lecture 13COMPSCI10510

13.2 The Stack Abstract Data Type

peek(), is_empty() and size() are useful to allow
the users to retrieve the properties of the stack
but they are not necessary

Code Example - Application

Code:

Lecture 13COMPSCI10511

13.2 The Stack Abstract Data Type

s = Stack()
print(s.is_empty())
s.push(4)
s.push('dog')
print(s.peek())
s.push(True)
print(s.size())
print(s.is_empty())
s.push(8.4)
s.pop()
s.pop()
print(s.size())

s
s

4s
4s dog
4s dog
4s dog True
4s dog True
4s dog True
4s dog True 8.4
4s dog True
4s dog
4s dog

True

dog

3
False

8.4
True
2

s = Stack() s
print(s.is_empty()) s True

Stack()

s.push(4) 4s
s.push('dog') 4s dogdogdog
s.push()

print(s.peek()) 4s dogdogdog dog
s.push(True) 4s dogdogdog True
print(s.size()) 4s dogdogdog True 3
print(s.is_empty()) 4s dogdogdog True False
s.push(8.4) 4s dogdogdog True 8.4
s.pop() 4s dogdogdog True 8.4

dog

s.pop() 4s dogdogdog True
print(s.size()) 4s dogdogdog 2

Code Example - Application

Code:

Lecture 13COMPSCI10512

13.2 The Stack Abstract Data Type

s = Stack()
print(s.is_empty())
s.push(4)
s.push('dog')
print(s.peek())
s.push(True)
print(s.size())
print(s.is_empty())
s.push(8.4)
s.pop()
s.pop()
print(s.size())

True

dog

3
False

8.4
True
2

s = []
s = []
s = [4]
s = [4, 'dog']
s = [4, 'dog']
s = [4, 'dog', True]
s = [4, 'dog', True]
s = [4, 'dog', True]
s = [4, 'dog', True, 8.4]
s = [4, 'dog', True, 8.4]
s = [4, 'dog', True]
s = [4, 'dog']

Top element

Exercise 1

What is the output of the following code fragment?

Lecture 13COMPSCI10513

13.2 The Stack Abstract Data Type

s = Stack()
print(s.is_empty())
s.push(True)
print(s.peek())
print(s.size())
s.push()
s.pop()
print(s.peek())
s.push(8)
s.pop()
print(s.size())

Exercise 2

What is the output of the following code fragment?

Lecture 13COMPSCI10514

13.2 The Stack Abstract Data Type

s = Stack()
print(s.is_empty())
s.push(4)
print(s.peek())
s.pop()
s.push(8.4)
print(s.size())
s.push('dog')
print(s.peek())
s.pop()
print(s.size())

The Stack In Python

We use a python List data structure to implement the stack
Remember:

The addition of new items and the removal of existing items always takes
place at the same end, referred to as the top of the stack

Lecture 13COMPSCI10515

13.2 The Stack Implementation

class Stack:
def __init__(self):

self.items = []
def is_empty(self):

return self.items == []
def size(self):

return len(self.items)

Python list

The Stack In Python

We use a python List data structure to implement the stack
Question:

Which

Lecture 13COMPSCI10516

13.2 The Stack Implementation

class Stack:

def push(self, item):
def pop(self):
def peek(self):

Top element?

Top element?

The Stack In Python

We use a python List data structure to implement the stack
Question:

Which ?
Version 1

Lecture 13COMPSCI10517

13.2 The Stack Implementation

class Stack:

def push(self, item):
self.items.append(item)

def pop(self):
result = self.items.pop()

Top element
Big-O?
push()/pop(): O(1)
search(): O(n)

The Stack In Python

We use a python List data structure to implement the stack
Question:

Which ?
Version 2

Lecture 13COMPSCI10518

13.2 The Stack Implementation

class Stack:

def push(self, item):
self.items.insert(0, item)

def pop(self):
result = self.items.pop(0)

Top element

Big-O?
push()/pop(): O(n)
search(): O(n)

The Stack In Python

We use a python List data structure to implement the stack
Question:

Which ?
Version 2

Lecture 13COMPSCI10519

13.2 The Stack Implementation

s = Stack()
print(s.is_empty())
s.push(4)
s.push('dog')
s.push()

Top element

4dog
print(s.is_empty())
s.push(4)

s.push()
s.push('dog')
s.push()

cat

Big-O?
push()/pop(): O(n)
search(): O(n)

Summary

Last-in, first-out data structure (push, pop)
Access is at one point (top of the stack)
Python lists support simple implementations of stacks

Lecture 13COMPSCI10520

