Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]

Think Python

How to Think Like a Computer Scientist

Version 1.1.24+Kart [Python 3.2]

Allen Downey

Green Tea Press

Needham, Massachusetts

Copyright © 2008 Allen Downey.
Printing history:
April 2002: First edition ofHow to Think Like a Computer Scientist.

August 2007: Major revision, changed title thlow to Think Like a (Python) Programmer.
June 2008: Major revision, changed title tdhink Python: How to Think Like a Computer Scientist.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify tocument under the terms of the GNU Free Doc-
umentation License, Version 1.1 or any later version phblisby the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and with no B&cker Texts.

The GNU Free Documentation License is available fneww.gnu.org or by writing to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MALQ21307, USA.

The original form of this book iSATEX source code. Compiling thi$TeX source has the effect of generating
a device-independent representation of a textbook, whaatbe converted to other formats and printed.

The BTEX source for this book is available frohttp://www.thinkpython.com

Preface

The strange history of this book

In January 1999 | was preparing to teach an introductorynaraging class in Java. | had taught
it three times and | was getting frustrated. The failure natithe class was too high and, even for
students who succeeded, the overall level of achievementagdow.

One of the problems | saw was the books. They were too big,tedtimuch unnecessary detail about
Java, and not enough high-level guidance about how to pmoghad they all suffered from the trap
door effect: they would start out easy, proceed graduatlg,then somewhere around Chapter 5 the
bottom would fall out. The students would get too much newemat, too fast, and | would spend
the rest of the semester picking up the pieces.

Two weeks before the first day of classes, | decided to writewry book. My goals were:

» Keep it short. It is better for students to read 10 pages tivanead 50 pages.

 Be careful with vocabulary. | tried to minimize the jargamdedefine each term at first use.

Build gradually. To avoid trap doors, | took the most diffictopics and split them into a
series of small steps.

« Focus on programming, not the programming language. Wided the minimum useful subset
of Java and left out the rest.

| needed a title, so on a whim | choslew to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did thedieg, and they understood enough
that | could spend class time on the hard topics, the infegegipics and (most important) letting
the students practice.

| released the book under the GNU Free Documentation Ligertgeh allows users to copy, modify,
and distribute the book.

What happened next is the cool part. Jeff Elkner, a high ddkaoher in Virginia, adopted my book
and translated it into Python. He sent me a copy of his tréinslaand | had the unusual experience
of learning Python by reading my own book.

Jeff and | revised the book, incorporated a case study bys@heyers, and in 2001 we released
How to Think Like a Computer Scientist: Learning with Python, also under the GNU Free Doc-

umentation License. As Green Tea Press, | published the bodkstarted selling hard copies
through Amazon.com and college book stores. Other books Goeen Tea Press are available at
greenteapress.com

Vi Chapter 0. Preface

In 2003 | started teaching at Olin College and | got to teacth@&yfor the first time. The contrast
with Java was striking. Students struggled less, learna@mmrked on more interesting projects,
and generally had a lot more fun.

Over the last five years | have continued to develop the bamkecting errors, improving some of
the examples and adding material, especially exercise08 | started work on a major revision—
at the same time, | was contacted by an editor at Cambridgeetsify Press who was interested in
publishing the next edition. Good timing!

The result is this book, now with the less grandiose Titienk Python. Some of the changes are:

| added a section about debugging at the end of each chadptese sections present general
techniques for finding and avoiding bugs, and warnings aBgtlton pitfalls.

« | removed the material in the last few chapters about thdampntation of lists and trees. |
still love those topics, but | thought they were incongrueitih the rest of the book.

| added more exercises, ranging from short tests of uratedlsig to a few substantial projects.

* | added a series of case studies—longer examples withisgercsolutions, and discussion.
Some of them are based on Swampy, a suite of Python progranogd fer use in my classes.
Swampy, code examples, and some solutions are availalteffirckpython.com

« | expanded the discussion of program development plandasid design patterns.

* The use of Python is more idiomatic. The book is still abaatgpamming, not Python, but
now | think the book gets more leverage from the language.

I hope you enjoy working with this book, and that it helps yearh to program and think, at least a
little bit, like a computer scientist.

Allen B. Downey
Needham MA

Allen Downey is an Associate Professor of Computer Sciend¢keaFranklin W. Olin College of
Engineering.

Acknowledgements

First and most importantly, | thank Jeff Elkner, who tratetbmy Java book into Python, which got
this project started and introduced me to what has turnetbdag my favorite language.

| also thank Chris Meyers, who contributed several sectiondow to Think Like a Computer
Scientist.

And | thank the Free Software Foundation for developing thJG-ree Documentation License,
which helped make my collaboration with Jeff and Chris palssi

| also thank the editors at Lulu who worked blow to Think Like a Computer Scientist.

| thank all the students who worked with earlier versionshig book and all the contributors (listed
below) who sent in corrections and suggestions.

And | thank my wife, Lisa, for her work on this book, and Gre@aPress, and everything else, too.

vii

Contributor List

More than 100 sharp-eyed and thoughtful readers have senggestions and corrections over the
past few years. Their contributions, and enthusiasm ferghoject, have been a huge help.

If you have a suggestion or correction, please send emddetthack@thinkpython.com . If |
make a change based on your feedback, | will add you to theibatur list (unless you ask to be
omitted).

If you include at least part of the sentence the error appeatisat makes it easy for me to search.
Page and section numbers are fine, too, but not quite as eagsykavith. Thanks!

Lloyd Hugh Allen sent in a correction to Section 8.4.

Yvon Boulianne sent in a correction of a semantic error ia@ar 5.

Fred Bremmer submitted a correction in Section 2.1.

Jonah Cohen wrote the Perl scripts to convert the LaTeXcediar this book into beautiful HTML.

Michael Conlon sent in a grammar correction in Chapter 2amdnprovement in style in Chapter 1,
and he initiated discussion on the technical aspects afireters.

Benoit Girard sent in a correction to a humorous mistakeeictiSn 5.6.

Courtney Gleason and Katherine Smith wrindesebet.py , which was used as a case study in an earlier
version of the book. Their program can now be found on the itebs

Lee Harr submitted more corrections than we have room tdwéise, and indeed he should be listed as
one of the principal editors of the text.

James Kaylin is a student using the text. He has submittederaus corrections.
David Kershaw fixed the brokeratTwice function in Section 3.10.

Eddie Lam has sent in numerous corrections to Chaptersahd3. He also fixed the Makefile so that
it creates an index the first time it is run and helped us setwgrsioning scheme.

Man-Yong Lee sent in a correction to the example code iniGe&t 4.

David Mayo pointed out that the word “unconsciously” in @tex 1 needed to be changed to “subcon-
sciously”.

Chris McAloon sent in several corrections to Sections 8B®&10.

Matthew J. Moelter has been a long-time contributor wha Benumerous corrections and suggestions
to the book.

Simon Dicon Montford reported a missing function definitiand several typos in Chapter 3. He also
found errors in théncrement function in Chapter 13.

John Ouzts corrected the definition of “return value” in Qtea 3.

Kevin Parks sent in valuable comments and suggestions lasvido improve the distribution of the
book.

David Pool sent in a typo in the glossary of Chapter 1, as asKind words of encouragement.
Michael Schmitt sent in a correction to the chapter on filed exceptions.

Robin Shaw pointed out an error in Section 13.1, where thgTpme function was used in an example
without being defined.

Paul Sleigh found an error in Chapter 7 and a bug in Jonah iCoRerl script that generates HTML
from LaTeX.

Craig T. Snydal is testing the text in a course at Drew Umiitgr He has contributed several valuable
suggestions and corrections.

lan Thomas and his students are using the text in a progmaghoaiurse. They are the first ones to test
the chapters in the latter half of the book, and they have madeerous corrections and suggestions.

viii

Chapter 0. Preface

Keith Verheyden sent in a correction in Chapter 3.
Peter Winstanley let us know about a longstanding errouirLatin in Chapter 3.
Chris Wrobel made corrections to the code in the chaptel®i® and exceptions.

Moshe Zadka has made invaluable contributions to thiseptojin addition to writing the first draft of
the chapter on Dictionaries, he provided continual guidandhe early stages of the book.

Christoph Zwerschke sent several corrections and peitagaggestions, and explained the difference
betweergleich andselbe.

James Mayer sent us a whole slew of spelling and typograpéicors, including two in the contributor
list.

Hayden McAfee caught a potentially confusing inconsisyeoetween two examples.

Angel Arnal is part of an international team of translatmarking on the Spanish version of the text.
He has also found several errors in the English version.

Tauhidul Hoque and Lex Berezhny created the illustratiniiShapter 1 and improved many of the other
illustrations.

Dr. Michele Alzetta caught an error in Chapter 8 and sentesorteresting pedagogic comments and
suggestions about Fibonacci and Old Maid.

Andy Mitchell caught a typo in Chapter 1 and a broken exampl@hapter 2.

Kalin Harvey suggested a clarification in Chapter 7 and hilmgme typos.

Christopher P. Smith caught several typos and helped usteiplde book for Python 2.2.
David Hutchins caught a typo in the Foreword.

Gregor Lingl is teaching Python at a high school in Viennais#ia. He is working on a German
translation of the book, and he caught a couple of bad emdEhapter 5.

Julie Peters caught a typo in the Preface.

Florin Oprina sent in an improvementimkeTime, a correction irprintTime , and a nice typo.
D. J. Webre suggested a clarification in Chapter 3.

Ken found a fistful of errors in Chapters 8, 9 and 11.

Ivo Wever caught a typo in Chapter 5 and suggested a cldiifican Chapter 3.

Curtis Yanko suggested a clarification in Chapter 2.

Ben Logan sent in a number of typos and problems with tréingléhe book into HTML.
Jason Armstrong saw the missing word in Chapter 2.

Louis Cordier noticed a spot in Chapter 16 where the code'tdidatch the text.

Brian Cain suggested several clarifications in Chaptersi23a

Rob Black sent in a passel of corrections, including sonamaghs for Python 2.2.

Jean-Philippe Rey at Ecole Centrale Paris sent a numbextctfigs, including some updates for Python
2.2 and other thoughtful improvements.

Jason Mader at George Washington University made a nunfilusetul suggestions and corrections.
Jan Gundtofte-Bruun reminded us that “a error” is an error.

Abel David and Alexis Dinno reminded us that the plural ofdtnix” is “matrices”, not “matrixes”. This
error was in the book for years, but two readers with the saiitials reported it on the same day. Weird.

Charles Thayer encouraged us to get rid of the semi-col@bkas put at the ends of some statements
and to clean up our use of “argument” and “parameter”.

Roger Sperberg pointed out a twisted piece of logic in Gérapt
Sam Bull pointed out a confusing paragraph in Chapter 2.
Andrew Cheung pointed out two instances of “use beforé def.

iX

C. Corey Capel spotted the missing word in the Third Theasé®ebugging and a typo in Chapter 4.
Alessandra helped clear up some Turtle confusion.

Wim Champagne found a brain-o in a dictionary example.

Douglas Wright pointed out a problem with floor divisionart .

Jared Spindor found some jetsam at the end of a sentence.

Lin Peiheng sent a number of very helpful suggestions.

Ray Hagtvedt sent in two errors and a not-quite-error.

Torsten Hilbsch pointed out an inconsistency in Swampy.

Inga Petuhhov corrected an example in Chapter 14.

Arne Babenhauserheide sent several helpful corrections.

Mark E. Casida is is good at spotting repeated words.

Scott Tyler filled in a that was missing. And then sent in aghefacorrections.
Gordon Shephard sent in several corrections, all in separaails.

Andrew Turnerspot ted an error in Chapter 8.

Adam Hobart fixed a problem with floor division anc .

Daryl Hammond and Sarah Zimmerman pointed out that | seayeohath.pi too early. And Zim
spotted a typo.

George Sass found a bug in a Debugging section.
Brian Bingham suggested Exercise 11.8.

Leah Engelbert-Fenton pointed out that | usgde as a variable name, contrary to my own advice.
And then found a bunch of typos and a “use before def.”

Joe Funke spotted a typo.

Chao-chao Chen found an inconsistency in the Fibonaconpka
Jeff Paine knows the difference between space and spam.
Lubos Pintes sent in a typo.

Gregg Lind and Abigail Heithoff suggested Exercise 14.6.

Max Hailperin has sent in a number of corrections and sugges Max is one of the authors of the
extraordinaryConcrete Abstractions, which you might want to read when you are done with this book.

Chotipat Pornavalai found an error in an error message.

Stanislaw Antol sent a list of very helpful suggestions.

Eric Pashman sent a number of corrections for Chapters.4-11

Miguel Azevedo found some typos.

Jianhua Liu sent in a long list of corrections.

Nick King found a missing word.

Martin Zuther sent a long list of suggestions.

Adam Zimmerman found an inconsistency in my instance ofiastance” and several other errors.
Ratnakar Tiwari suggested a footnote explaining degéaérangles.

Anurag Goel suggested another solution ifombecedarian ~ and sent some additional corrections.
And he knows how to spell Jane Austen.

Kelli Kratzer spotted one of the typos.
Mark Griffiths pointed out a confusing example in Chapter 3.
Roydan Ongie found an error in my Newton’s method.

Chapter 0. Preface

Patryk Wolowiec helped me with a problem in the HTML version
Mark Chonofsky told me about a new keyword in Python 3.0.
Russell Coleman helped me with my geometry.

Wei Huang spotted several typographical errors.

Karen Barber spotted the the oldest typo in the book.

Nam Nguyen found a typo and pointed out that | used the Démopattern but didn’t mention it by
name.

Stéphane Morin sent in several corrections and suggestio
Paul Stoop corrected a typotures_only .
Eric Bronner pointed out a confusion in the discussion efdlder of operations.

Alexandros Gezerlis set a new standard for the number aalityjof suggestions he submitted. We are
deeply grateful!

Gray Thomas knows his right from his left.
Giovanni Escobar Sosa sent a long list of corrections agdestions.
Alix Etienne fixed one of the URLSs.

Contents

Preface \%

1 The way of the program 1
1.1 ThePython programminglanguage cuu.. 1
1.2 Whatisaprogram? e 2
1.3 Whatisdebugging? 3
1.4 Formaland naturallanguages 4
1.5 Thefirstprogram e 6
1.6 Debugging. e
1.7 Glossary e
1.8 EXEICISES

2 Variables, expressions and statements 9
2.1 Valuesandtypes. e 9
2.2 Variables. 10
2.3 \Variablenamesandkeywords L 11
24 Statements 12
25 Operatorsandoperands e, 12
2.6 EXPressSions i i e e e 13
2.7 Orderofoperations 13
2.8 Stringoperations e, 14
29 COMMENES
210 Debugging 15
211 GlOSSANY . . v o e e e 15
2.12 EXEICISES . . . o v 16

14

Xii Contents

3 Functions 17
3.1 Functioncalls 17
3.2 Typeconversionfunctions 17
3.3 Mathfunctions 18
3.4 Composition e e e 19
3.5 Addingnewfunctions L oL 19
3.6 Definitionsanduses e 20
3.7 Flowofexecution 21
3.8 Parametersand arguments oo 21
3.9 \Variables and parametersarelocal 22
3.10 Stackdiagrams e 23
3.11 Fruitful functions and void functions 24
3.12 Whyfunctions? 25
3.13 Debugging 25
314 GloSSary e e e 25
315 EXEICISES o 26

4 Case study: interface design 29
4.1 TurtleWorld 29
4.2 Simplerepetition 30
4.3 EXEICISES o i 1
4.4 Encapsulation e 32
45 Generalization e 32
4.6 Interfacedesign 33
4.7 Refactoring e 34
4.8 Adevelopmentplan 35
4.9 docstring e 35
410 Debugging. 36
411 GloSSary e 36

412 EXEICISES . . . v o e e e e e 36

Contents Xiii

5 Conditionals and recursion 39
5.1 Modulusoperator e 39
5.2 Boolean expressions.o e 39
5.3 Logicaloperators e e 40
5.4 Conditionalexecution 40
5.5 Alternative execution 41
5.6 Chainedconditionals 41
5.7 Nestedconditionals e 42
5.8 ReCUrsion 2
5.9 Stack diagrams for recursive functions Lo 43
5.10 Infiniterecursion 44
5.11 Keyboardinput 45
512 Debugging. 45
513 Glossary e e A
5.14 EXEICISES o i i e a7

6 Fruitful functions 51
6.1 Returnvalues 51
6.2 Incrementaldevelopment L 52
6.3 Composition 54
6.4 Booleanfunctions e 54
6.5 MOrerecursion 55
6.6 Leapoffaith. 57
6.7 Onemoreexample e 7
6.8 Checkingtypes e 58
6.9 Debugging. 9
6.10 GlOSSAry v i e e e e 60

6.11

EXEercises e e 60

Xiv Contents

7 lteration 63
7.1 Multipleassignment L 63
7.2 Updatingvariables e 64
7.3 Thewhile statement

T4 break ... 65
7.5 SQUAreroofS 66

7.6 Algorithms 76
7.7 Debugging. 8 6
7.8 Glossary e e 8 6
7.9 EXerCiSes 96

8 Strings 71
8.1 ASHiNQiSasSequUENCE i e e 71
8.2 BN L
8.3 Traversalwithdor loop 72
8.4 Stringslices e 73
8.5 Stringsareimmutable 74
8.6 Searching e 4
8.7 Loopingandcounting e 75
8.8 sting methods.

8.9 Thein operator e

8.10 Stringcomparison e e 77
8.11 Debugging e 77
8.12 GlOSSAry o e e e 79
8.13 EXEerCiSes 79

9 Case study: word play 81
9.1 Readingwordlists. e 81
9.2 EXercises 28
9.3 Search

9.4 Loopingwithindices 84
9.5 Debugging 58
9.6 Glossary 6 8

9.7 EXErcises e e e 6 8

Contents

XV

10 Lists
10.1 Alistisasequence
10.2 Listsaremutable
10.3 Traversingalist e
10.4 ListoperationS.
10.5 Listslices
10.6 Listmethods.
10.7 Map,fiterandreduce
10.8 Deletingelements
10.9 Listsandstrings L e
10.10 Objectsandvalues
10.11 Aliasing e e e
10.12 ListargumentS. e
10.13 Debugging
10.14 GlOSSArY o o e e e
10.15 EXEerCiSES o i o e

11 Dictionaries
11.1 Dictionaryasasetofcounters i
11.2 Loopinganddictionaries
11.3 Reverselookup
11.4 Dictionariesandlists e
115 Memos e
11.6 Globalvariables e
11.7 Debugging e e e e
11.8 Glossary o o
11.9 EXErCISES o e

12 Tuples
12.1 Tuplesareimmutable
12.2 Tupleassignment e e

12.3 Tuplesasreturnvalues

89
89
89
91
91
92
92
93
94
95
95
96
97
98
99
100

XVi Contents
12.4 Variable-lengthargumenttuples 117
12,5 Listsandtuples 118
12.6 Dictionariesandtuples e . 119
12.7 Comparingtuples e 121
12.8 Sequencesofsequences e e 122
12,9 Debugging e 122
12,10 GlOSSArY v o e e e e 123
12,11 EXErCISES . . . v o i o i i e e e e 124

13 Case study: data structure selection 127
13.1 Wordfrequencyanalysis 127
13.2 Randomnumbers 128
13.3 Word histogram e 129
13.4 Mostcommonwordso e 130
13.5 Optionalparameters e 130
13.6 Dictionarysubtraction. L 131
13.7 Randomwords 311
13.8 Markovanalysis 132
13.9 Datastructures 133
13.10 Debugging 134
13.11 GlOSSAry o e e e e e e 135
13.12 EXErCISES . . . o o i i i i e e e 136

14 Files 137
141 Persistence. e 137
14.2 Readingandwriting L 137
14.3 Formatoperator e e 138
14.4 Filenamesandpaths. e 139
145 Catchingexceptions i 140
14.6 Databases 141
14.7 Pickling e e e 141
148 Pipes. e e A2
14,9 Writingmodules 143
14.10 Debugging 144
14.11 GlOSSArY v e e e e e e 145
14.12 EXErCISES . . . v o o i i e e e 145

Contents XVii
15 Classes and objects 147
15.1 User-definedtypes e 147
15.2 Attributes 148
15.3 Rectangles e 149
15.4 Instancesasreturnvalues e e 150
15,5 Objectsaremutable 150
156 CopyiNg . . . o o o e e e 511
15.7 Debugging e e e e e 152
15.8 Glossary 153
15.9 EXErCiSeS o v v 153
16 Classes and functions 155
16.1 TiMe e 515
16.2 Purefunctions 156
16.3 Modifiers e 571
16.4 Prototypingversusplanning e 158
16.5 Debugging e 159
16.6 Glossary e 160
16.7 EXErCISES o e 160
17 Classes and methods 161
17.1 Object-orientedfeatures. 161
17.2 Printingobjects e 162
17.3 Anotherexample 163
17.4 A morecomplicatedexample Lo 164
175 Theinitmethod 164
17.6 The.str __method 165
17.7 Operatoroverloading e 165
17.8 Type-baseddispatch. 166
17.9 Polymorphism e 167
17.10 Debugging e 168
17.11 GlOSSAry o e e 168
17.12 EXEICISES o o 169

XViii Contents

18 Inheritance 171
18.1 Cardobjects 171
18.2 Classattributes e 172
18.3 Comparingcards e 173
184 DeCKS o 417
18.5 Printingthedeck 174
18.6 Add,remove,shuffleandsort L 175
18.7 Inheritance. e 176
18.8 Classdiagrams e 177
18.9 Debugging e e e 178
18.10 GIlOSSAry o o e e 179
18.11 EXErCISES o o 180

19 Case study: Tkinter 183
19.1 GUI . . 183
19.2 Buttonsandcallbacks 184
19.3 Canvaswidgets e 185
19.4 Coordinate SEQUENCES e e 186
19.5 Morewidgets e e 186
19.6 Packingwidgets 187
19.7 MenusandCallables 190
19.8 Binding e e 91
19.9 Debugging e 193
19.10 GIlOSSArY v v e e e e 193
19.11 EXErCISES o o 194

A Debugging 197
Al SYNtaxerrors o e e e e e 197
A2 RUNIMEEITOrS e e e e e 199

A3 SemantiCerrors i e e e e e e e 201

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computéersiist. This way of thinking com-
bines some of the best features of mathematics, engineanuighatural science. Like mathemati-
cians, computer scientists use formal languages to dedeés i(specifically computations). Like
engineers, they design things, assembling componentsystems and evaluating tradeoffs among
alternatives. Like scientists, they observe the behavicomplex systems, form hypotheses, and
test predictions.

The single most important skill for a computer scientigingblem solving. Problem solving means
the ability to formulate problems, think creatively abooligions, and express a solution clearly and
accurately. As it turns out, the process of learning to pogis an excellent opportunity to practice
problem-solving skills. That's why this chapter is call&fhe way of the program.”

On one level, you will be learning to program, a useful skjfiitself. On another level, you will use
programming as a means to an end. As we go along, that endegitirbe clearer.

1.1 The Python programming language

The programming language you will learn is Python. Pyth@miexample of &igh-level language
other high-level languages you might have heard of are C, €e#l, and Java.

There are alsdow-level languagessometimes referred to as “machine languages” or “assembly
languages.” Loosely speaking, computers can only execatgg@ms written in low-level languages.
So programs written in a high-level language have to be gsmmbbefore they can run. This extra
processing takes some time, which is a small disadvantalgigloflevel languages.

The advantages are enormous. First, it is much easier togroig a high-level language. Programs
written in a high-level language take less time to writeythge shorter and easier to read, they are
more likely to be correct, and are easier to maintain. Secbiggh-level languages aortable,
meaning that they can run on different kinds of computerh ¥&tv or no modifications. Low-level
programs can run on only one kind of computer and have to bettemto run on another.

Due to these advantages, almost all programs are writteightlavel languages. Low-level lan-
guages are used only for a few specialized applications.

Two kinds of programs process high-level languages intclkxel languagesinterpreters and
compilers. An interpreter reads a high-level program and executesdgning that it does what the

2 Chapter 1. The way of the program

program says. It processes the program a little at a timexnaitely reading lines and performing
computations.

%
SOURCE INTERPRETER OUTPUT
CODE .

/O

A compiler reads the program and translates it completeiyrbehe program starts running. In this
context, the high-level program is called tbeurce code and the translated program is called the
object codeor theexecutable Once a program is compiled, you can execute it repeatedhowi
further translation.

SOURCE COMPILER OBJECT EXECUTOR OUTPUT
CODE —| cope —

O

Python is considered an interpreted language becauserPgtbgrams are executed by an inter-
preter. There are two ways to use the interpretgeractive modeandscript mode. In interactive
mode, you type Python programs and the interpreter prietsebult:

>>> 1 + 1
2

The chevron>>>, is theprompt the interpreter uses to indicate that it is ready. If you type 1,
the interpreter replies.

Alternatively, you can store code in a file and use the ingtgsrto execute the contents of the file,
which is called ascript. By convention, Python scripts have names that end \jth

To execute the script, you have to tell the interpreter thmenaf the file. In a UNIX command
window, you would typepython dinsdale.py . In other development environments, the details of
executing scripts are different. You can find instructiamrsyfour environment at the Python website

python.org

Working in interactive mode is convenient for testing snpédices of code because you can type and
execute them immediately. But for anything more than a feedj you should save your code as a
script so you can modify and execute it in the future.

1.2 Whatis a program?

A program is a sequence of instructions that specifies how to perforongatation. The compu-
tation might be something mathematical, such as solvingtesyof equations or finding the roots
of a polynomial, but it can also be a symbolic computatiorchsas searching and replacing text in
a document or (strangely enough) compiling a program.

The details look different in different languages, but a feasic instructions appear in just about
every language:

input: Get data from the keyboard, a file, or some other device.

1.3. What is debugging? 3

output: Display data on the screen or send data to a file or other device
math: Perform basic mathematical operations like addition antliptication.

conditional execution: Check for certain conditions and execute the appropriafeesece of state-
ments.

repetition: Perform some action repeatedly, usually with some vanatio

Believe it or not, that's pretty much all there is to it. Evemogram you've ever used, no matter
how complicated, is made up of instructions that look prettych like these. So you can think of
programming as the process of breaking a large, complexitasksmaller and smaller subtasks
until the subtasks are simple enough to be performed withobtieese basic instructions.

That may be a little vague, but we will come back to this topiew we talk aboudlgorithms.

1.3 Whatis debugging?

Programming is error-prone. For whimsical reasons, prograng errors are calledugs and the
process of tracking them down is callddbugging

Three kinds of errors can occur in a program: syntax errargjme errors, and semantic errors. It
is useful to distinguish between them in order to track themrdmore quickly.

1.3.1 Syntax errors

Python can only execute a program if the syntax is corretigratise, the interpreter displays an
error messageSyntax refers to the structure of a program and the rules about thattsre. For
example, parentheses have to come in matching paif$, §02) is legal, bui) is asyntax error.

In English readers can tolerate most syntax errors, whiethig we can read the poetry of e. e.
cummings without spewing error messages. Python is notrgiviog. If there is a single syntax
error anywhere in your program, Python will display an em@ssage and quit, and you will not be
able to run your program. During the first few weeks of yourgueanming career, you will probably
spend a lot of time tracking down syntax errors. As you gajregience, you will make fewer errors
and find them faster.

1.3.2 Runtime errors

The second type of error is a runtime error, so called bedieserror does not appear until after the
program has started running. These errors are also e@tlegptionsbecause they usually indicate
that something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will sebérfirst few chapters, so it might be
a while before you encounter one.

4 Chapter 1. The way of the program

1.3.3 Semantic errors

The third type of error is theemantic error. If there is a semantic error in your program, it will
run successfully in the sense that the computer will not ggaeny error messages, but it will not
do the right thing. It will do something else. Specificaltywill do what you told it to do.

The problem is that the program you wrote is not the programwanted to write. The meaning of
the program (its semantics) is wrong. Identifying semaetiors can be tricky because it requires
you to work backward by looking at the output of the progrard &ying to figure out what it is
doing.

1.3.4 Experimental debugging

One of the most important skills you will acquire is debugginAlthough it can be frustrating,
debugging is one of the most intellectually rich, challergiand interesting parts of programming.

In some ways, debugging is like detective work. You are aumtfrd with clues, and you have to
infer the processes and events that led to the results you see

Debugging is also like an experimental science. Once yoa havdea about what is going wrong,
you modify your program and try again. If your hypothesis wasrect, then you can predict the
result of the modification, and you take a step closer to a ingrgrogram. If your hypothesis was
wrong, you have to come up with a new one. As Sherlock Holméstea out, “When you have
eliminated the impossible, whatever remains, however abable, must be the truth.” (A. Conan
Doyle, The Sign of Four)

For some people, programming and debugging are the santp tfiimat is, programming is the
process of gradually debugging a program until it does wbatwant. The idea is that you should
start with a program that doessmething and make small modifications, debugging them as you go,
so that you always have a working program.

For example, Linux is an operating system that containsghods of lines of code, but it started
out as a simple program Linus Torvalds used to explore thet 8386 chip. According to Larry

Greenfield, “One of Linus’s earlier projects was a prograsat thould switch between printing

AAAA and BBBB. This later evolved to Linux.”The Linux Users' Guide Beta Version 1).

Later chapters will make more suggestions about debuggidg#ner programming practices.

1.4 Formal and natural languages

Natural languagesare the languages people speak, such as English, Spaniskremch. They
were not designed by people (although people try to imposeesorder on them); they evolved
naturally.

Formal languagesare languages that are designed by people for specific afiphis. For example,
the notation that mathematicians use is a formal languagestparticularly good at denoting rela-
tionships among numbers and symbols. Chemists use a foamgui&ge to represent the chemical
structure of molecules. And most importantly:

Programming languages are formal languages that have beeredigned to express
computations.

1.4. Formal and natural languages 5

Formal languages tend to have strict rules about syntaxeX@nple, 3+ 3= 6 is a syntactically cor-
rect mathematical statement, but 3= 3$6 is not.H,O is a syntactically correct chemical formula,
butoZzis not.

Syntax rules come in two flavors, pertainingd&ensand structure. Tokens are the basic elements
of the language, such as words, numbers, and chemical elen@ne of the problems withH3=

3%6 is that $ is not a legal token in mathematics (at leastrassfaknow). Similarly,Zzis not legal
because there is no element with the abbrevigZion

The second type of syntax error pertains to the structurestdéitement; that is, the way the tokens
are arranged. The statement 3= 3%6 is illegal because even thougtand= are legal tokens, you
can’t have one right after the other. Similarly, in a cherhfoamula the subscript comes after the
element name, not before.

Exercise 1.1 Write a well-structured English sentence with invalid tokén it. Then write another
sentence with all valid tokens but with invalid structure.

When you read a sentence in English or a statement in a foemglhge, you have to figure out
what the structure of the sentence is (although in a natarguage you do this subconsciously).
This process is calleparsing.

For example, when you hear the sentence, “The penny drépmadunderstand that “the penny”
is the subject and “dropped” is the predicate. Once you havegol a sentence, you can figure out
what it means, or the semantics of the sentence. Assumibgdhb&now what a penny is and what
it means to drop, you will understand the general impligatibthis sentence.

Although formal and natural languages have many featuresimmon—tokens, structure, syntax,
and semantics—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people de#hy using contextual
clues and other information. Formal languages are desigrieel nearly or completely unam-
biguous, which means that any statement has exactly oneimgeaegardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstayslinatural languages
employ lots of redundancy. As a result, they are often vesbd®rmal languages are less
redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If | sajnépenny dropped,” there
is probably no penny and nothing dropptngormal languages mean exactly what they say.

People who grow up speaking a natural language—everyonn-béve a hard time adjusting to
formal languages. In some ways, the difference betweendgbamd natural language is like the
difference between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meanijttze whole poem together
creates an effect or emotional response. Ambiguity is niyteommon but often deliberate.

Prose: The literal meaning of words is more important, and the stmaccontributes more meaning.
Prose is more amenable to analysis than poetry but stith@ftebiguous.

Programs: The meaning of a computer program is unambiguous and ligmdlcan be understood
entirely by analysis of the tokens and structure.

1This idiom means that someone realized something afteriadpef confusion.

6 Chapter 1. The way of the program

Here are some suggestions for reading programs (and otmeafftanguages). First, remember that
formal languages are much more dense than natural langsagétakes longer to read them. Also,
the structure is very important, so it is usually not a goaehitb read from top to bottom, left to
right. Instead, learn to parse the program in your head tiigérg the tokens and interpreting the
structure. Finally, the details matter. Small errors inllgpg and punctuation, which you can get
away with in natural languages, can make a big differencddmraal language.

1.5 The first program

Traditionally, the first program you write in a new languagiealled “Hello, World!” because all it
does is display the words, “Hello, World!” In Python, it lo®kke this:

print(' Hello, World! ")

This is an example of print function , which doesn't actually print anything on paper. It disgay
a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning andoéiide text to be displayed; they
don’t appear in the result.

Some people judge the quality of a programming languagedgithplicity of the “Hello, World!”
program. By this standard, Python does about as well asipessi

1.6 Debugging

It is a good idea to read this book in front of a computer so yau tty out the examples as you
go. You can run most of the examples in interactive mode,ftydu put the code into a script, it is
easier to try out variations.

Whenever you are experimenting with a new feature, you shtoyito make mistakes. For example,
in the “Hello, world!” program, what happens if you leave oute of the quotation marks? What if
you leave out both? What if you spelint wrong?

This kind of experiment helps you remember what you readsi bhelps with debugging, because
you get to know what the error messages mean. It is better ke méstakes now and on purpose
than later and accidentally.

Programming, and especially debugging, sometimes bringstoong emotions. If you are strug-
gling with a difficult bug, you might feel angry, despondenembarrassed.

There is evidence that people naturally respond to compaeif they were people When they
work well, we think of them as teammates, and when they ar@ratts or rude, we respond to them
the same way we respond to rude, obstinate people.

Preparing for these reactions might help you deal with th@me approach is to think of the com-
puter as an employee with certain strengths, like speed eewspn, and particular weaknesses,
like lack of empathy and inability to grasp the big picture.

2See Reeves and NaJ$e Media Equation: How People Treat Computers, Television, and New Media Like Real People
and Places.

1.7. Glossary 7

Your job is to be a good manager: find ways to take advantagleeo$trengths and mitigate the
weaknesses. And find ways to use your emotions to engageheitproblem, without letting your
reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuabldl #hat is useful for many activities
beyond programming. At the end of each chapter there is agdgiy section, like this one, with
my thoughts about debugging. | hope they help!

1.7 Glossary

problem solving: The process of formulating a problem, finding a solution, ardressing the
solution.

high-level language: A programming language like Python that is designed to bg feadhumans
to read and write.

low-level language: A programming language that is designed to be easy for a canjpexecute;
also called “machine language” or “assembly language.”

portability: A property of a program that can run on more than one kind offater.
interpret: To execute a program in a high-level language by transldttimige line at a time.

compile: To translate a program written in a high-level language mtow-level language all at
once, in preparation for later execution.

source code: A program in a high-level language before being compiled.
object code: The output of the compiler after it translates the program.
executable: Another name for object code that is ready to be executed.

prompt: Characters displayed by the interpreter to indicate thiatriéady to take input from the
user.

script: A program stored in a file (usually one that will be interpdjte

interactive mode: A way of using the Python interpreter by typing commands afptessions at
the prompt.

script mode: A way of using the Python interpreter to read and executersiaits in a script.
program: A set of instructions that specifies a computation.

algorithm: A general process for solving a category of problems.

bug: An errorin a program.

debugging: The process of finding and removing any of the three kinds @f@amming errors.
syntax: The structure of a program.

syntax error: An error in a program that makes it impossible to parse (aackfore impossible to
interpret).

exception: An error that is detected while the program is running.

8 Chapter 1. The way of the program

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other thart thiegprogrammer
intended.

natural language: Any one of the languages that people speak that evolvedailgtur

formal language: Any one of the languages that people have designed for sppaifposes, such
as representing mathematical ideas or computer progrdinsogramming languages are
formal languages.

token: One of the basic elements of the syntactic structure of arpmganalogous to a word in a
natural language.

parse: To examine a program and analyze the syntactic structure.

print statement: An instruction that causes the Python interpreter to displaalue on the screen.

1.8 Exercises

Exercise 1.2Use a web browser to go to the Python websitthon.org . This page contains
information about Python and links to Python-related pages it gives you the ability to search
the Python documentation.

For example, if you entgrint in the search window, the first link that appears is the docuaimn
of theprint function. At this point, not all of it will make sense to yowtht is good to know where
itis.

Exercise 1.3 Start the Python interpreter and typelp() to start the online help utility. Or you
can typehelp(print) to get information about thgrint function. When finished with the help
utility, type quit at the prompt to return to the interpreter.

If this example doesn’t work, you may need to install addi#ibPython documentation or set an
environment variable; the details depend on your operatystem and version of Python.

Exercise 1.4 Start the Python interpreter and use it as a calculator.dPiglsyntax for math oper-
ations is almost the same as standard mathematical not&srexample, the symbois - and/
denote addition, subtraction and division, as you wouldeexpThe symbol for multiplication is.

If you run a 10 kilometer race in 43 minutes 30 seconds, whgdis average time per mile? What
is your average speed in miles per hour? (Hint: there areKil@&heters in a mile).

Chapter 2

Variables, expressions and
statements

2.1 Values and types

A value is one of the basic things a program works with, like a lettea aumber. The values we
have seen so far afe 2, and' Hello, World!

These values belong to differagpes 2 is an integer, antiHello, World! ' is astring, so-called
because it contains a “string” of letters. You (and the ioteter) can identify strings because they
are enclosed in quotation marks.

The print function also works for integers.

>>> print(4)
4

If you are not sure what type a value has, the interpreterelaypdu.

>>> type(' Hello, World!)
<class ‘'str ' >
>>> type(17)

<class ‘'int ' >

Not surprisingly, strings belong to the type and integers belong to the typmé . Less obviously,
numbers with a decimal point belong to a type cafleat , because these numbers are represented
in a format calledloating-point.

>>> type(3.2)
<class ' float ' >

What about values like17' and' 3.2 ' ? They look like numbers, but they are in quotation marks
like strings.

>>> type(' 17")

<class ‘'str '>
>>> type(' 3.2")
<class 'str ' >

10 Chapter 2. Variables, expressions and statements

They're strings.

When you type a large integer, you might be tempted to use @setween groups of three digits,
as in1,000,000 . Thisis not a legal integer in Python, but it is a legathething:

>>> print(1,000,000)
100

Well, that's not what we expected at all! Python interpre€90,000 as a comma-separated se-
guence of integers, which it prints with spaces between.

This is the first example we have seen of a semantic error:atie ins without producing an error
message, but it doesn’t do the “right” thing.

2.2 Variables

One of the most powerful features of a programming languatiesiability to manipulateariables.
A variable is a name that refers to a value.

An assignment statementreates new variables and gives them values:

>>> message = ' And now for something completely different
>>>n = 17
>>> pi = 3.1415926535897931

This example makes three assignments. The first assigria@tstia new variable nameuessage;
the second gives the integEf to n; the third assigns the (approximate) valuawb pi .

A common way to represent variables on paper is to write tmeenaith an arrow pointing to the
variable’s value. This kind of figure is calledstate diagrambecause it shows what state each of
the variables is in (think of it as the variable’s state of d)inThis diagram shows the result of the
previous example:

message —= 'And now for something completely different’

n— 17

pi —= 3.1415926535897931

To display the value of a variable, you can use a print fumctio

>>> print(n)

17

>>> print(pi)
3.14159265359

The type of a variable is the type of the value it refers to.

>>> type(message)
<class 'str ' >
>>> type(n)

<class "int '>
>>> type(pi)

<class ' float ' >

2.3. Variable names and keywords 11

Exercise 2.1 Try the following:

>>> m = 1,000,000
>>> type(m)

For now, notice that the type of the varialoiés not an integer.

2.3 Variable names and keywords

Programmers generally choose names for their variabl¢stbhaneaningful—they document what
the variable is used for.

Variable names can be arbitrarily long. They can contaih betters and numbers, but they have to
begin with a letter. It is legal to use uppercase lettersjthata good idea to begin variable names
with a lowercase letter (you'll see why later).

The underscore characten (can appear in a name. It is often used in names with multiplelgy
such asny_name or airspeed_of_unladen_swallow

If you give a variable an illegal name, you get a syntax error:

>>> T76trombones = ' big parade
SyntaxError: invalid syntax

>>> more@ = 1000000
SyntaxError: invalid syntax

>>> class = ' Advanced Theoretical Zymurgy
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letteore@is illegal because it contains
an illegal characte@ But what's wrong wittclass ?

It turns out thatlass is one of Python'keywords. The interpreter uses keywords to recognize the
structure of the program, and they cannot be used as variabies.

Python has 30 keywords:

and elif import raise

as else in return
assert except is try
break finally lambda while
class for nonlocal with
continue from not yield
def global or

del if pass

You might want to keep this list handy. If the interpreter gains about one of your variable names
and you don’t know why, see if it is on this list. Note that yancsee all of Python’s keywords by

typing:

>>> help(' keywords ')

12 Chapter 2. Variables, expressions and statements

2.4 Statements

A statement is a unit of code that the Python interpreter cacwge. We have seen two kinds of
statements: calls to the print function and assignments.

When you type a statement in interactive mode, the integpetecutes it and displays the result, if
there is one.

A script usually contains a sequence of statements. If tisar@re than one statement, the results
appear one at a time as the statements execute. Recall trgitassstored on your file system and
will be executed using different mechanics than you have ssdar. You can find instructions for
your environment at the Python websgitghon.org . Or, ask your instructor.

For example, the script
print(1)
X =2
print(x)

produces the output

1
2

The assignment statement produces no output.

2.5 Operators and operands

Operators are special symbols that represent computations like iadditnd multiplication. The
values the operator is applied to are calbg@rands

The operators, -, *,/ and** perform addition, subtraction, multiplication, divisiand exponen-
tiation, as in the following examples:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

In some other languages,is used for exponentiation, but in Python it is a bitwise eper called
XOR. | won't cover bitwise operators in this book, but you caad about them atiki.python.
org/moin/BitwiseOperators

Note that there is a special division operafor calledfloor division, which behaves like normal
division, but effectively throws away digits to the righttble decimal point:

>>> minute = 133
>>> minute//60
2

If either of the operands is a floating-point number, Pytherigrms floating-point division, and the
result is afloat

2.6. Expressions 13

2.6 Expressions

An expressionis a combination of values, variables, and operators. Aevallby itself is considered
an expression, and so is a variable, so the following areeghillexpressions (assuming that the
variablex has been assigned a value):

17
X
x + 17

If you type an expression in interactive mode, the integretaluatesit and displays the result:

>> 1+ 1
2

But in a script, an expression all by itself doesn’t do anyghiThis is a common source of confusion
for beginners.

Exercise 2.2 Type the following statements in the Python interpreteie® what they do:

xX X O
+ 1

5
1

Now put the same statements into a script and run it. Whateiotiiput? Modify the script by
transforming each expression into a print call and thentragain.

2.7 Order of operations

When more than one operator appears in an expression, thea@valuation depends on thdes
of precedence For mathematical operators, Python follows mathematicalention. The acronym
PEMDAS is a useful way to remember the rules:

« Parentheses have the highest precedence and can be usazktarf@xpression to evaluate in
the order you want. Since expressions in parentheses dtatdfirst? * (3-1) is 4, and
(1+1)**(5-2) is 8. You can also use parentheses to make an expressionteasiad, as in
(minute * 100) / 60 , evenifit doesn’t change the result.

« Exponentiation has the next highest precedenc@4e1 is 3, not 4, an®*1**3 is 3, not
27.

< Multiplication andDivision have the same precedence, which is higher #hddition and
Subtraction, which also have the same precedence*®b is 5, not 4, and+4/2 is 8, not
5.

« Operators with the same precedence are evaluated froroleifjht. So in the expression
degrees / 2 * pi , the division happens first and the result is multipliedpby To divide
by 2, you can use parentheses or wdégrees / 2 / pi

14 Chapter 2. Variables, expressions and statements

2.8 String operations

In general, you cannot perform mathematical operationstiomgs, even if the strings look like
numbers, so the following are illegal:

VAR ' eggs' /' easy' " third '*"a charm'

The+ operator works with strings, but it might not do what you ectpé performsconcatenation
which means joining the strings by linking them end-to-efal. example:

first = ' throat
second = ' warbler '
print(first + second)

The output of this program tkroatwarbler

The * operator also works on strings; it performs repetition. [Esample,' Spam *3 is
' SpamSpamSpar. If one of the operands is a string, the other has to be andnteg

This use oft and* makes sense by analogy with addition and multiplicatioist 884*3 is equiv-
alent to4+4+4, we expect Spani *3 to be the same dsSpam +' Spam +' Spam , and it is. On
the other hand, there is a significant way in which string edecation and repetition are different
from integer addition and multiplication. Can you think opeoperty that addition has that string
concatenation does not?

2.9 Comments

As programs get bigger and more complicated, they get méfieuti to read. Formal languages are
dense, and it is often difficult to look at a piece of code andrégut what it is doing, or why.

For this reason, it is a good idea to add notes to your progtamsplain in natural language what
the program is doing. These notes are catlechments and they start with th# symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You lsarpait comments at the end of a line:
percentage = (minute * 100) / 60 # percentage of an hour
Everything from the# to the end of the line is ignored—it has no effect on the progra

Comments are most useful when they document non-obviotisrésaof the code. It is reasonable
to assume that the reader can figurewlugt the code does; it is much more useful to explahy.

This comment is redundant with the code and useless:
v=>5 # assign 5 to v

This comment contains useful information that is not in thdec
v=>5 # velocity in meters/second

Good variable names can reduce the need for comments, lguhéones can make complex expres-
sions hard to read, so there is a tradeoff.

2.10. Debugging 15

2.10 Debugging

At this point the syntax error you are most likely to make isligal variable name, likelass and
yield , which are keywords, arddjob andUS$, which contain illegal characters.

If you put a space in a variable name, Python thinks it is twerapds without an operator:

>>> pad name = 5
SyntaxError: invalid syntax

For syntax errors, the error messages don't help much. Thst m@mmmon messages are
SyntaxError: invalid syntax andSyntaxError: invalid token , neither of which is very
informative.

The runtime error you are most likely to make is a “use bef@fe’dhat is, trying to use a variable
before you have assigned a value. This can happen if youspaliable name wrong:

>>> principal = 327.68
>>> interest = principle * rate
NameError: name ' principle ' is not defined

Variables names are case sensitiveL&®X is not the same datex .

At this point the most likely cause of a semantic error is thaeo of operations. For example, to

evaluatezin, you might be tempted to write

>>> pi = 3.1415926535897931
>>> 10/ 20 * pi

But the division happens first, so you would gg®, which is not the same thing! There is no way
for Python to know what you meant to write, so in this case yon'ttget an error message; you just
get the wrong answer.

2.11 Glossary
value: One of the basic units of data, like a number or string, thabgiam manipulates.

type: A category of values. The types we have seen so far are irstéygeint), floating-point
numbers (typdloat), and strings (typstr).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.
string: A type that represents sequences of characters.

variable: A name that refers to a value.

statement: A section of code that represents a command or action. Sthéastatements we have
seen are assignments and calls to the print function.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and theagatluey refer to.

16 Chapter 2. Variables, expressions and statements

keyword: A reserved word that is used by the compiler to parse a pragyamcannot use key-
words likeif , def , andwhile as variable names.

operator: A special symbol that represents a simple computation lilditeon, multiplication, or
string concatenation.

operand: One of the values on which an operator operates.

floor division: The operation that divides two numbers and chops off theifrapart.

expression: A combination of variables, operators, and values thalesmts a single result value.
evaluate: To simplify an expression by performing the operations itheoito yield a single value.

rules of precedence:The set of rules governing the order in which expressionshifng multiple
operators and operands are evaluated.

concatenate: To join two operands end-to-end.

comment: Information in a program that is meant for other programngersanyone reading the
source code) and has no effect on the execution of the program

2.12 Exercises

Exercise 2.3 Assume that we execute the following assignment statements
width = 17
height = 12.0
delimiter =
For each of the following expressions, write the value ofdkpression and the type (of the value of
the expression).

1. width/2

2. width/2.0
3. height/3
4.1 +2*5

5. delimiter * 5

Use the Python interpreter and tlype function to check your answers.

Exercise 2.4 Practice using the Python interpreter as a calculator:

1. The volume of a sphere with radiuss g‘nre’. What is the volume of a sphere with radius 5?
Hints: Be sure to execute the statemgnt 3.1415926535897931 first and 392.6 is wrong!

2. Suppose the cover price of a book is $24.95, but booksg®ea 40% discount. Shipping
costs $3 for the first copy and 75 cents for each additiona).cdfhat is the total wholesale
cost for 60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an easy patB (#r mile), then 3 miles at
tempo (7:12 per mile) and 1 mile at easy pace again, what toriegdt home for breakfast?

Chapter 3

Functions

3.1 Function calls

In the context of programming,fanction is a named sequence of statements that performs a com-
putation. When you define a function, you specify the namethedequence of statements. Later,
you can “call” the function by name. We have already seen @amele of afunction call:

>>> type(32)

<class ‘'int ' >

The name of the function itype . The expression in parentheses is calleddtgument of the
function. The result, for this function, is the type of thgament.

It is common to say that a function “takes” an argument antlfres” a result. The result is called
thereturn value.

3.2 Type conversion functions

Python provides built-in functions that convert valuesiirone type to another. Thet function
takes any value and converts it to an integer, if it can, orglans otherwise:

>>> int(' 32")

32

>>> int(' Hello ")

ValueError: invalid literal for int() with base 10: " Hello *

int can convert floating-point values to integers, but it doesmind off; it chops off the fraction
part:

>>> int(3.99999)
3

>>> int(-2.3)

-2

float converts integers and strings to floating-point numbers:

18 Chapter 3. Functions

>>> float(32)

32.0

>>> float(' 3.14159 ')
3.14159

Finally, str converts its argument to a string:

>>> str(32)

' 3o

>>> str(3.14159)
' 3.14159 '

3.3 Math functions

Python has a math module that provides most of the familidhemaatical functions. Anoduleis
a file that contains a collection of related functions.

Before we can use the module, we have to import it:
>>> import math

This statement createsnaodule objectnamed math. If you print the module object, you get some
information about it:

>>> print(math)
<module ' math' (built-in)>

The module object contains the functions and variables ééfimthe module. To access one of the
functions, you have to specify the name of the module and dingerof the function, separated by a
dot (also known as a period). This format is caltkd notation.

>>> ratio = signal_power / noise_power
>>> decibels = 10 * math.log10(ratio)

>>> radians = 0.7
>>> height = math.sin(radians)

The first example computes the logarithm base 10 of the siprabise ratio. The math module
also provides a function calléay that computes logarithms base

The second example finds the singatfians . The name of the variable is a hint trsit and the
other trigonometric functionggs , tan , etc.) take arguments in radians. To convert from degrees to
radians, divide by 360 and multiply by2

>>> degrees = 45

>>> radians = degrees / 360.0 * 2 * math.pi
>>> math.sin(radians)

0.7071067811865475

The expressiomath.pi gets the variablgi from the math module. The value of this variable is an
approximation ofit, accurate to about 15 digits.

If you know your trigonometry, you can check the previousitelsy comparing it to the square root
of two divided by two:

3.4. Composition 19

>>> math.sqrt(2) / 2.0
0.7071067811865476

3.4 Composition

So far, we have looked at the elements of a program—variablgsessions, and statements—in
isolation, without talking about how to combine them.

One of the most useful features of programming languagéesreis ability to take small building
blocks anccomposethem. For example, the argument of a function can be any Kiesression,
including arithmetic operators:

X = math.sin(degrees / 360.0 * 2 * math.pi)
And even function calls:
x = math.exp(math.log(x+1))

Almost anywhere you can put a value, you can put an arbitrgpyession, with one exception: the
left side of an assignment statement has to be a variable.rfamyeother expression on the left side
is a syntax errdr.

>>> minutes = hours * 60 # right
>>> hours * 60 = minutes # wrong!
SyntaxError: can 't assign to operator

3.5 Adding new functions

So far, we have only been using the functions that come withd®y but it is also possible to add
new functions. Afunction definition specifies the name of a new function and the sequence of
statements that execute when the function is called.

Here is an example:

def print_lyrics():
print"l " m a lumberjack, and I ' m okay.")
print("l sleep all night and | work all day.")

def is a keyword that indicates that this is a function definitiohhe name of the function is
print_lyrics . The rules for function names are the same as for variableegafetters, num-
bers and some punctuation marks are legal, but the firstcfesiGan’t be a number. You can’t use a
keyword as the name of a function, and you should avoid haaivariable and a function with the
same name.

The empty parentheses after the name indicate that thiidrsoesn’t take any arguments.

The first line of the function definition is called theader, the rest is called thbody. The header
has to end with a colon and the body has to be indented. By otiowe the indentation is always
four spaces (see Section 3.13). The body can contain anyetuhbtatements.

1we will see exceptions to this rule later.

20 Chapter 3. Functions

The strings in the print statements are enclosed in doulieguSingle quotes and double quotes do
the same thing; most people use single quotes except in lesdisis where a single quote (which
is also an apostrophe) appears in the string.

To end the function, you have to enter an empty line (this tsecessary in a script).
Defining a function creates a variable with the same name.

>>> print print_lyrics

<function print_lyrics at 0xb7e99e9c>
>>> print(type(print_lyrics))

<class ' function ' >

The value ofprint_lyrics is afunction object, which has typelass ' function '
The syntax for calling the new function is the same as forthnifunctions:

>>> print_lyrics()

"' m a lumberjack, and | ' m okay.

| sleep all night and | work all day.

Once you have defined a function, you can use it inside anbihetion. For example, to repeat the
previous refrain, we could write a function callepeat_lyrics

def repeat_lyrics():
print_lyrics()
print_lyrics()

And then callrepeat_lyrics

>>> repeat_lyrics()

"' m a lumberjack, and | ' m okay.
| sleep all night and | work all day.
"' m a lumberjack, and | ' m okay.

| sleep all night and | work all day.

But that’s not really how the song goes.

3.6 Definitions and uses

Pulling together the code fragments from the previoussecthe whole program looks like this:

def print_lyrics():
print "I ''m a lumberjack, and | ' m okay."
print "l sleep all night and | work all day."

def repeat_lyrics():
print_lyrics()
print_lyrics()

repeat_lyrics()

3.7. Flow of execution 21

This program contains two function definitionprint_lyrics and repeat_lyrics . Function
definitions get executed just like other statements, bueffeet is to create function objects. The
statements inside the function do not get executed untifdhetion is called, and the function
definition generates no output.

As you might expect, you have to create a function before youexecute it. In other words, the
function definition has to be executed before the first tinie éalled.

Exercise 3.1 Move the last line of this program to the top, so the functiah appears before the
definitions. Run the program and see what error message you ge

Exercise 3.2 Move the function call back to the bottom and move the definitf print_lyrics
after the definition ofepeat_lyrics . What happens when you run this program?

3.7 Flow of execution

In order to ensure that a function is defined before its firet yeu have to know the order in which
statements are executed, which is calledfkn of execution

Execution always begins at the first statement of the prog&iaiements are executed one at a time,
in order from top to bottom.

Function definitions do not alter the flow of execution of tmegram, but remember that statements
inside the function are not executed until the function itech

A function call is like a detour in the flow of execution. Inateof going to the next statement, the
flow jumps to the body of the function, executes all the statets there, and then comes back to
pick up where it left off.

That sounds simple enough, until you remember that oneifmcan call another. While in the
middle of one function, the program might have to executesthgiements in another function. But
while executing that new function, the program might havexecute yet another function!

Fortunately, Python is good at keeping track of where itaseach time a function completes, the
program picks up where it left off in the function that called When it gets to the end of the
program, it terminates.

What's the moral of this sordid tale? When you read a progyamdon't always want to read from
top to bottom. Sometimes it makes more sense if you followfltve of execution.

3.8 Parameters and arguments

Some of the built-in functions we have seen require argusaeior example, when you call
math.sin you pass a number as an argument. Some functions take maretigaargument;
math.pow takes two, the base and the exponent.

Inside the function, the arguments are assigned to vasaialéedparameters Here is an example
of a user-defined function that takes an argument:

def print_twice(bruce):
print(bruce)
print(bruce)

22 Chapter 3. Functions

This function assigns the argument to a parameter named . When the function is called, it
prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

>>> print_twice(' Spam)
Spam

Spam

>>> print_twice(17)

17

17

>>> print_twice(math.pi)
3.14159265359
3.14159265359

The same rules of composition that apply to built-in funes@lso apply to user-defined functions,
SO we can use any kind of expression as an argumenptifibrtwice

>>> print_twice(' Spam ' *4)
Spam Spam Spam Spam

Spam Spam Spam Spam

>>> print_twice(math.cos(math.pi))
-1.0

-1.0

The argument is evaluated before the function is called,nsthé examples the expressions
' Spam ' *4 andmath.cos(math.pi) are only evaluated once.

You can also use a variable as an argument:

>>> michael = ' Eric, the half a bee.
>>> print_twice(michael)

Eric, the half a bee.

Eric, the half a bee.

The name of the variable we pass as an argunmgctidel) has nothing to do with the name of the
parameterifuce). It doesn’t matter what the value was called back home @nctiler); here in
print_twice , we call everybodyruce .

3.9 Variables and parameters are local

When you create a variable inside a function, itdsal, which means that it only exists inside the
function. For example:

def cat_twice(partl, part2):
cat = partl + part2
print_twice(cat)

This function takes two arguments, concatenates them, iamdg the result twice. Here is an exam-
ple that usesiit:

3.10. Stack diagrams 23

>>> linel = ' Bing tiddle '
>>> |ine2 = ' tiddle bang.
>>> cat_twice(linel, line2)
Bing tiddle tiddle bang.
Bing tiddle tiddle bang.

Whencat_twice terminates, the variabbat is destroyed. If we try to printit, we get an exception:

>>> print(cat)
NameError: name

cat ' is not defined

Parameters are also local. For example, outgiide twice , there is no such thing dsuce .

3.10 Stack diagrams

To keep track of which variables can be used where, it is samestuseful to draw atack diagram.
Like state diagrams, stack diagrams show the value of ea@blg, but they also show the function
each variable belongs to.

Each function is represented byrame. A frame is a box with the name of a function beside it and
the parameters and variables of the function inside it. Taeksdiagram for the previous example
looks like this:

linel ——= ’Bing tiddle’

__main__
line2 —= ’tiddle bang.’
partl —= 'Bing tiddle ’
cat_twice part2 —= 'tiddle bang.’

cat —= ’Bing tiddle tiddle bang.’

print_twice bruce —= ’Bing tiddle tiddle bang.’

The frames are arranged in a stack that indicates whichifimcalled which, and so on. In this
exampleprint_twice was called bycat twice , andcat twice was called by main__, which
is a special name for the topmost frame. When you create ablarbutside of any function, it
belongsto_main__ .

Each parameter refers to the same value as its correspoadjogent. Sopartl has the same
value adinel , part2 has the same value B2 , andbruce has the same value et .

If an error occurs during a function call, Python prints tlaene of the function, and the name of the
function that called it, and the name of the function thatectthat, all the way back to_main__ .

For example, if you try to accesat from within print_twice , you get aNameError :

Traceback (innermost last):
File "testpy", line 13, in __main__
cat_twice(linel, line2)
File "test.py", line 5, in cat twice

24 Chapter 3. Functions

print_twice(cat)
File "test.py", line 9, in print_twice
print(cat)
NameError: global name ‘cat' is not defined

This list of functions is called &raceback It tells you what program file the error occurred in, and
what line, and what functions were executing at the timelskh ahows the line of code that caused
the error.

The order of the functions in the traceback is the same agtie of the frames in the stack diagram.
The function that is currently running is at the bottom.

3.11 Fruitful functions and void functions

Some of the functions we are using, such as the math fun¢tyaels results; for lack of a better
name, | call thenfruitful functions . Other functions, likeprint_twice , perform an action but
don’treturn a value. They are callgdid functions.

When you call a fruitful function, you almost always want to something with the result; for
example, you might assign it to a variable or use it as parh@hgression:

X = math.cos(radians)
golden = (math.sqrt() + 1) / 2

When you call a function in interactive mode, Python displthe result:

>>> math.sqrt(5)
2.2360679774997898

But in a script, if you call a fruitful function all by itselthe return value is lost forever!
math.sqrt(5)

This script computes the square root of 5, but since it doesore or display the result, it is not very
useful.

Void functions might display something on the screen or tsmrae other effect, but they don't have
a return value. If you try to assign the result to a variabte get a special value calléane.

>>> result = print_twice("Bing ')
Bing

Bing

>>> print(result)

None

The valueNone is not the same as the strihglone' . It is a special value that has its own type:

>>> print(type(None))
<class ' NoneType' >

The functions we have written so far are all void. We will stariting fruitful functions in a few
chapters.

3.12. Why functions? 25

3.12 Why functions?

It may not be clear why it is worth the trouble to divide a pragrinto functions. There are several
reasons:

 Creating a new function gives you an opportunity to namesagof statements, which makes
your program easier to read and debug.

« Functions can make a program smaller by eliminating répetcode. Later, if you make a
change, you only have to make it in one place.

Dividing a long program into functions allows you to debbhg fparts one at a time and then
assemble them into a working whole.

Well-designed functions are often useful for many progga®nce you write and debug one,
you can reuse it.

3.13 Debugging

If you are using a text editor to write your scripts, you migim into problems with spaces and tabs.
The best way to avoid these problems is to use spaces exaluéio tabs). Most text editors that
know about Python do this by default, but some don't.

Tabs and spaces are usually invisible, which makes themtbatebug, so try to find an editor that
manages indentation for you.

Also, don't forget to save your program before you run it. 8aevelopment environments do this
automatically, but some don't. In that case the program yedaoking at in the text editor is not
the same as the program you are running.

Debugging can take a long time if you keep running the saneeyiect, program over and over!

Make sure that the code you are looking at is the code you amging. If you're not sure, put
something likeprint(' hello ') at the beginning of the program and run it again. If you doe& s
hello , you're not running the right program!

3.14 Glossary

function: A named sequence of statements that performs some usefatiope Functions may or
may not take arguments and may or may not produce a result.

function definition: A statement that creates a new function, specifying its ngaeameters, and
the statements it executes.

function object: A value created by a function definition. The name of the fiamcts a variable
that refers to a function object.

header: The first line of a function definition.
body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed asgament.

26 Chapter 3. Functions

function call: A statement that executes a function. It consists of thetfoncame followed by an
argument list.

argument: A value provided to a function when the function is calledisNalue is assigned to the
corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable canyoloé used inside its
function.

return value: The result of a function. If a function call is used as an eggian, the return value
is the value of the expression.

fruitful function: A function that returns a value.

void function: A function that doesn’t return a value.

module: A file that contains a collection of related functions andeottiefinitions.
import statement: A statement that reads a module file and creates a moduletobjec

module object: A value created by aimport statement that provides access to the values defined
in a module.

dot notation: The syntax for calling a function in another module by spgoi the module name
followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or arstateas part of a larger
statement.

flow of execution: The order in which statements are executed during a program r

stack diagram: A graphical representation of a stack of functions, theifaldes, and the values
they refer to.

frame: A box in a stack diagram that represents a function call. itains the local variables and
parameters of the function.

traceback: A list of the functions that are executing, printed when acegtion occurs.

3.15 Exercises

Exercise 3.3Python provides a built-in function calldgh that returns the length of a string, so the
value oflen(" allen ") is 5.

Write a function namedght_justify that takes a string namedas a parameter and prints the
string with enough leading spaces so that the last lettdreo$tring is in column 70 of the display.

>>> right_justify(“allen ')
allen

Exercise 3.4 A function object is a value you can assign to a variable os pasan argument. For
examplegdo_twice is a function that takes a function object as an argument alislittwice:

def do_twice(f):
f()
f)

3.15. Exercises 27

Here’s an example that usés twice to call a function nameprint_spam twice.

def print_spam():
print((' spam')

do_twice(print_spam)

1. Type this example into a script and test it.

2. Modify do_twice so that it takes two arguments, a function object and a valug calls the
function twice, passing the value as an argument.

3. Write a more general version pfint_spam , calledprint_twice , that takes a string as a
parameter and prints it twice.

4. Use the modified version alb_twice to call print_twice twice, passing spam' as an
argument.

5. Define a new function calledb _four that takes a function object and a value and calls the
function four times, passing the value as a parameter. ereld be only two statements in
the body of this function, not four.

You can see my solution #tinkpython.com/code/do_four.py

Exercise 3.5This exercisé can be done using only the statements and other features wee ha
learned so far.

1. Write a function that draws a grid like the following:

oo oo 4
oo oo 4	
e LTI

Hint: to print more than one value on a line, you can print a c@¥separated sequence:

print("+, '-")

To have Python leave the line unfinished (so the value priméadappears on the same line),
use the following:

print(' +' ,end=""
printi ' -")

?Based on an exercise in OuallifRractical C Programming, Third Edition, O'Reilly (1997)

28 Chapter 3. Functions

The output of these statementsis - ' .
Aprint() call all by itself ends the current line and goes to the nexd.li

2. Use the previous function to draw a similar grid with foows and four columns.

You can see my solution #tinkpython.com/code/grid.py

Chapter 4

Case study: interface design

4.1 TurtleWorld

To accompany this book, | have written a suite of modulesedafilwampy. One of these modules
is TurtleWorld, which provides a set of functions for dragiilines by steering turtles around the
screen.

You can download Swampy frothinkpython.com/swampy ; follow the instructions there to install
Swampy on your system.

Move into the directory that contaifsirtieWorld.py , create a file namegblygon.py and type
in the following code:

from TurtleWorld import *

world = TurtleWorld()
bob = Turtle()
print(bob)

wait_for_user()

The first line is a variation of thanport statement we saw before; instead of creating a module
object, it imports the functions from the module directly,y®u can access them without using dot
notation.

The next lines create a TurtleWorld assigneavtold and a Turtle assigned tmb. Printingbob
yields something like:

<TurtleWorld.Turtle object at 0xOOFD1CDO>

This means thatob refers to arinstanceof a Turtle as defined in modulkurtleWorld . In this
context, “instance” means a member of a set; this Turtle ésafrthe set of possible Turtles.

wait_for_user tells TurtleWorld to wait for the user to do something, aligb in this case there’s
not much for the user to do except close the window.

TurtleWorld provides several turtle-steering functiofds:andbk for forward and backward, ant
andrt for left and right turns. Also, each Turtle is holding a pemjet is either down or up; if the

30 Chapter 4. Case study: interface design

pen is down, the Turtle leaves a trail when it moves. The fonspu andpd stand for “pen up” and
“pen down.”

To draw a right angle, add these lines to the program (afteatiorgbob and before calling
wait_for_user):

fd(bob, 100)
lt(bob)
fd(bob, 100)

The first line tellshob to take 100 steps forward. The second line tells him to tuitn le

When you run this program, you should $®b move east and then north, leaving two line segments
behind.

Now modify the program to draw a square. Don’t go on until yeujot it working!

4.2 Simple repetition

Chances are you wrote something like this (leaving out tlte ¢bat creates TurtleWorld and waits
for the user):

fd(bob, 100)
lt(bob)

fd(bob, 100)
lt(bob)

fd(bob, 100)
lt(bob)

fd(bob, 100)

We can do the same thing more concisely witlora statement. Add this example polygon.py
and run it again:

for i in range(4):
print(' Hello! ')

You should see something like this:

Hello!
Hello!
Hello!
Hello!

This is the simplest use of tHer statement; we will see more later. But that should be enooigh t
let you rewrite your square-drawing program. Don’t go onlwymau do.

Here is aor statement that draws a square:

for i in range(4):
fd(bob, 100)
It(bob)

4.3. Exercises 31

The syntax of dor statement is similar to a function definition. It has a hedbat ends with a
colon and an indented body. The body can contain any numtstatefments.

A for statement is sometimes calledo@p because the flow of execution runs through the body
and then loops back to the top. In this case, it runs the baaiytimes.

This version is actually a little different from the previaquare-drawing code because it makes
another turn after drawing the last side of the square. Tha é&xrn takes a little more time, but it
simplifies the code if we do the same thing every time throlghldop. This version also has the
effect of leaving the turtle back in the starting positicaihg in the starting direction.

4.3 Exercises

The following is a series of exercises using TurtleWorldeylare meant to be fun, but they have a
point, too. While you are working on them, think about what goint is.

The following sections have solutions to the exercises,@ttdbok until you have finished (or at
least tried).

1. Write a function calledquare that takes a parameter namedwhich is a turtle. It should
use the turtle to draw a square.

Write a function call that passdsb as an argument tequare , and then run the program
again.

2. Add another parameter, namenth , tosquare . Modify the body so length of the sides is
length , and then modify the function call to provide a second argumBun the program
again. Test your program with a range of valuesédogth

3. The functiondt andrt make 90-degree turns by default, but you can provide a second
argument that specifies the number of degrees. For exaft{ptd, 45) turnsbob 45
degrees to the left.

Make a copy ofquare and change the name polygon . Add another parameter named
and modify the body so it draws an n-sided regular polygomt:Hihe exterior angles of an
n-sided regular polygon are 38)n degrees.

4. Write a function calledtircle that takes a turtlet,, and radiusy, as parameters and that
draws an approximate circle by invokipglygon with an appropriate length and number of
sides. Test your function with a range of values of

Hint: figure out the circumference of the circle and make stivat length * n =
circumference

Another hint: ifbob is too slow for you, you can speed him up by chandiolgdelay , which
is the time between moves, in seconlatsh.delay = 0.01 ought to get him moving.

5. Make a more general versionaifcle calledarc that takes an additional paramegeagle |,
which determines what fraction of a circle to draangle is in units of degrees, so when
angle=360 , arc should draw a complete circle.

32 Chapter 4. Case study: interface design

4.4 Encapsulation

The first exercise asks you to put your square-drawing cadeaiiunction definition and then call
the function, passing the turtle as a parameter. Here isicoi

def square(t):
for i in range(4):
fd(t, 100)
It(t)

square(bob)

The innermost statementd, andlt are indented twice to show that they are insideftihe loop,
which is inside the function definition. The next lirsguare(bob) , is flush with the left margin, so
that is the end of both thfer loop and the function definition.

Inside the functiont, refers to the same turtlmb refersto, sdt(f) has the same effect bighob)
So why not call the parametbob? The idea is that can be any turtle, not jusbb, so you could
create a second turtle and pass it as an argumentace :

ray = Turtle()
square(ray)

Wrapping a piece of code up in a function is caltapsulation One of the benefits of encap-
sulation is that it attaches a name to the code, which sesraskind of documentation. Another
advantage is that if you re-use the code, it is more concisalt@ function twice than to copy and
paste the body!

45 Generalization

The next step is to addlength parameter tequare . Here is a solution:

def square(t, length):
for i in range(4):
fd(t, length)

It(t)

square(bob, 100)

Adding a parameter to a function is callgdneralizationbecause it makes the function more gen-
eral: in the previous version, the square is always the s@&agis this version it can be any size.

The next step is also a generalization. Instead of drawingr&gpolygon draws regular polygons
with any number of sides. Here is a solution:

def polygon(t, n, length):
angle = 360.0 / n
for i in range(n):
fd(t, length)
It(t, angle)

polygon(bob, 7, 70)

4.6. Interface design 33

This draws a 7-sided polygon with side length 70. If you hawgerthan a few numeric arguments,
it is easy to forget what they are, or what order they shoulthbk is legal, and sometimes helpful,
to include the names of the parameters in the argument list:

polygon(bob, n=7, length=70)

These are callekeyword argumentsbecause they include the parameter names as “keywords” (not
to be confused with Python keywords litshile anddef).

This syntax makes the program more readable. It is also andamiabout how arguments and
parameters work: when you call a function, the argumentassigned to the parameters.

4.6 Interface design

The next step is to writeircle , which takes a radius, as a parameter. Here is a simple solution
that usegolygon to draw a 50-sided polygon:

def circle(t, r):
circumference = 2 * math.pi * r
n = 50
length = circumference / n
polygon(t, n, length)

The first line computes the circumference of a circle withiwad using the formula ir. Since
we usemath.pi , we have to impormath. By conventionjmport statements are usually at the
beginning of the script.

n is the number of line segments in our approximation of a ejrsblength is the length of each
segment. Thusgolygon draws a 50-sides polygon that approximates a circle withusad

One limitation of this solution is that is a constant, which means that for very big circles, the
line segments are too long, and for small circles, we waste trawing very small segments. One

solution would be to generalize the function by takings a parameter. This would give the user
(whoever callgircle) more control, but the interface would be less clean.

Theinterface of a function is a summary of how it is used: what are the patara@ What does the
function do? And what is the return value? An interface igéal” if it is “as simple as possible, but
not simpler. (Einstein)”

In this exampley belongs in the interface because it specifies the circle tdraen. n is less
appropriate because it pertains to the detailsowf the circle should be rendered.

Rather than clutter up the interface, it is better to choasampropriate value af depending on
circumference

def circle(t, r):
circumference = 2 * math.pi * r
n = int(circumference / 3) + 1
length = circumference / n
polygon(t, n, length)

Now the number of segments is (approximatelsgumference/3 , so the length of each segment
is (approximately) 3, which is small enough that the cirddedk good, but big enough to be efficient,
and appropriate for any size circle.

34 Chapter 4. Case study: interface design

4.7 Refactoring

When | wrotecircle , | was able to re-uspolygon because a many-sided polygon is a good ap-
proximation of a circle. Buarc is not as cooperative; we can'’t ugglygon orcircle to draw an
arc.

One alternative is to start with a copy mdlygon and transform it int@rc . The result might look
like this:

def arc(t, r, angle):
arc_length = 2 * math.pi * r * angle / 360
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float(angle) / n

for i in range(n):
fd(t, step_length)
It(t, step_angle)

The second half of this function looks likelygon , but we can’t re-uspolygon without changing
the interface. We could generaligelygon to take an angle as a third argument, but theypgon
would no longer be an appropriate name! Instead, let's balhtore general functiggolyline

def polyline(t, n, length, angle):
for i in range(n):
fd(t, length)
It(t, angle)

Now we can rewrit@olygon andarc to usepolyline

def polygon(t, n, length):
angle = 360.0 / n
polyline(t, n, length, angle)

def arc(t, r, angle):
arc_length = 2 * math.pi * r * angle / 360
n = int(arc_length / 3) + 1
step_length = arc_length / n
step_angle = float(angle) / n
polyline(t, n, step_length, step_angle)

Finally, we can rewriteircle to usearc :

def circle(t, r):
arc(t, r, 360)

This process—rearranging a program to improve functioarfates and facilitate code re-use—is
calledrefactoring. In this case, we noticed that there was similar cod@dnandpolygon , so we
“factored it out” intopolyline

If we had planned ahead, we might have writpetyline first and avoided refactoring, but often
you don’t know enough at the beginning of a project to desigtha interfaces. Once you start
coding, you understand the problem better. Sometimestogfag is a sign that you have learned
something.

4.8. A development plan 35

4.8 A development plan

A development planis a process for writing programs. The process we used ircts study is
“encapsulation and generalization.” The steps of this gseare:

1. Start by writing a small program with no function definitm

2. Once you get the program working, encapsulate it in a fonetnd give it a name.
3. Generalize the function by adding appropriate pararseter
4

. Repeat steps 1-3 until you have a set of working functi@ugy and paste working code to
avoid retyping (and re-debugging).

5. Look for opportunities to improve the program by refaictgr For example, if you have
similar code in several places, consider factoring it im@ppropriately general function.

This process has some drawbacks—we will see alternatiterstdut it can be useful if you don’t
know ahead of time how to divide the program into functionsisTapproach lets you design as you
go along.

4.9 docstring

A docstring is a string at the beginning of a function that explains therface (“doc” is short for
“documentation”). Here is an example:

def polyline(t, length, n, angle):
""Draw n line segments with the given length and
angle (in degrees) between them. t is a turtle.
for i in range(n):
fd(t, length)
It(t, angle)

This docstring is a triple-quoted string, also known as atitmé string because the triple quotes
allow the string to span more than one line.

Note that this documentation can be accessed in the interptia thehelp function:

>>> help(polyline)
Help on function polyline in module _ main__:

polyline(t, length, n, angle)
Draw n line segments with the given length and
angle (in degrees) between them. t is a turtle.

It is terse, but it contains the essential information someewould need to use this function. It
explains concisely what the function does (without getiimmp the details of how it does it). It
explains what effect each parameter has on the behavioe fifitiction and what type each parameter
should be (if it is not obvious).

Writing this kind of documentation is an important part oferface design. A well-designed inter-
face should be simple to explain; if you are having a hard gxpgaining one of your functions, that
might be a sign that the interface could be improved.

36 Chapter 4. Case study: interface design

4.10 Debugging

An interface is like a contract between a function and a callae caller agrees to provide certain
parameters and the function agrees to do certain work.

For examplepolyline requires four arguments. The first has to be a Turtle. Thengkbas to be
a number, and it should probably be positive, although igwut that the function works even if
it isn’t. The third argument should be an integnge complains otherwise (depending on which
version of Python you are running). The fourth has to be a rermbhich is understood to be in
degrees.

These requirements are callpbconditions because they are supposed to be true before the func-
tion starts executing. Conversely, conditions at the erti@function argpostconditions Postcon-
ditions include the intended effect of the function (likeding line segments) and any side effects
(like moving the Turtle or making other changes in the Warld)

Preconditions are the responsibility of the caller. If tledlar violates a (properly documented!)
precondition and the function doesn’t work correctly, thig s in the caller, not the function.

4.11 Glossary

instance: A member of a set. The TurtleWorld in this chapter is a memifeh® set of Turtle-
Worlds.

loop: A part of a program that can execute repeatedly.
encapsulation: The process of transforming a sequence of statements intactidn definition.

generalization: The process of replacing something unnecessarily spetiKe ¢ number) with
something appropriately general (like a variable or patame

keyword argument: An argument that includes the name of the parameter as a ‘thelyiv

interface: A description of how to use a function, including the name deskcriptions of the argu-
ments and return value.

refactoring: The process of modifying a working program to improve fuoeiinterfaces and other
qualities of the code.

development plan: A process for writing programs.
docstring: A string that appears in a function definition to documentftmetion’s interface.
precondition: A requirement that should be satisfied by the caller befotmatfon starts.

postcondition: A requirement that should be satisfied by the function befareds.

4.12 Exercises
Exercise 4.1 Download the code in this chapter frahinkpython.com/code/polygon.py

1. Write appropriate docstrings fpolygon , arc andcircle

4.12. Exercises 37

2. Draw a stack diagram that shows the state of the prograre wekicutingcircle(bob,
radius) . You can do the arithmetic by hand or agtaht statements to the code.

3. The version ofirc in Section 4.7 is not very accurate because the linear appation of the
circle is always outside the true circle. As a result, thédeéurnds up a few units away from
the correct destination. My solution shows a way to redueesffect of this error. Read the
code and see if it makes sense to you. If you draw a diagrammyglt see how it works.

Exercise 4.2 Write an appropriately general set of functions that camdlawers like this:

You can download a solution frothinkpython.com/code/flower.py

Exercise 4.3 Write an appropriately general set of functions that camvdiiaapes like this:

KIERE

You can download a solution frothinkpython.com/code/pie.py

Exercise 4.4 The letters of the alphabet can be constructed from a madatahber of basic ele-
ments, like vertical and horizontal lines and a few curvessifn a font that can be drawn with a
minimal number of basic elements and then write functioasdnaw letters of the alphabet.

You should write one function for each letter, with nandesv_a , draw_b , etc., and put your func-
tions in a file namedetters.py . You can download a “turtle typewriter” frorhinkpython.
com/code/typewriter.py to help you test your code.

You can download a solution frothinkpython.com/code/letters.py

38

Chapter 4. Case study: interface design

Chapter 5

Conditionals and recursion

5.1 Modulus operator

Themodulus operatorworks on integers and yields the remainder when the firsteoykis divided
by the second. In Python, the modulus operator is a perogm{®%). The syntax is the same as for
other operators:

>>> quotient = 7 / 3
>>> print(quotient)
2.3333333333333335
>>> remainder = 7 % 3
>>> print(remainder)

1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly usefut.dxample, you can check whether one
number is divisible by another—if % yis zero, therx is divisible byy.

Also, you can extract the right-most digit or digits from anmher. For example; % 10 yields the
right-most digit ofx (in base 10). Similarlx % 100 yields the last two digits.

5.2 Boolean expressions

A boolean expressioris an expression that is either true or false. The followirgreples use
the operatoe=, which compares two operands and produtms if they are equal andralse
otherwise:

>> 5 == §
True
>>> 5 == §
False

True andFalse are special values that belong to the typel ; they are not strings:

40 Chapter 5. Conditionals and recursion

>>> type(True)
<class ' bool ' >
>>> type(False)
<class ' bool ' >

The== operator is one of theelational operators; the others are:

Xl=y # X is not equal to y

X >y # x is greater than y

X<y # x is less than y

X >=y # X is greater than or equal to y
X <=y # x is less than or equal to y

Although these operations are probably familiar to you,Rlgthon symbols are different from the
mathematical symbols. A common error is to use a single esjgalE) instead of a double equal
sign E=). Remember that is an assignment operator and is a relational operator. There is no
such thing as< or =>.

5.3 Logical operators

There are thretogical operators and, or, andnot . The semantics (meaning) of these operators
is similar to their meaning in English. For example> 0 and x < 10 is true only ifx is greater
than Oand less than 10.

n%2 == 0 or n%3 == 0 is true ifeither of the conditions is true, that is, if the number is divisible
by 2or 3.

Finally, thenot operator negates a boolean expressiomosgx > y) is true ifx > vy is false,
that is, ifx is less than or equal 1o

Strictly speaking, the operands of the logical operatoosikhbe boolean expressions, but Python is
not very strict. Any nonzero number is interpreted as “true.

>>> 17 and True
True

This flexibility can be useful, but there are some subtldtiasthat might be confusing. You might
want to avoid it (unless you know what you are doing).

5.4 Conditional execution

In order to write useful programs, we almost always need liigyato check conditions and change
the behavior of the program accordingBonditional statementsgive us this ability. The simplest
form is theif statement:

if x > 0:
print(' x is positve ')

The boolean expression after thestatement is called treondition. If it is true, then the indented
statement gets executed. If not, nothing happens.

5.5. Alternative execution 41

if statements have the same structure as function definiteiteader followed by an indented
body. Statements like this are calledmpound statements

There is no limit on the number of statements that can appeheibody, but there has to be at least
one. Occasionally, it is useful to have a body with no statem@isually as a place keeper for code
you haven't written yet). In that case, you can usedss statement, which does nothing.

if x <0:
pass # need to handle negative values!

5.5 Alternative execution

A second form of thd statement iglternative execution in which there are two possibilities and
the condition determines which one gets executed. Thesyods like this:

if x%2 == 0:

print((' x is even ')
else:

printi ' x is odd ')

Assume thak is an integer. If the remainder whenis divided by 2 is 0, then we know thatis
even, and the program displays a message to that effecte Kdhdition is false, the second set
of statements is executed. Since the condition must be trfsedse, exactly one of the alternatives
will be executed. The alternatives are call@@nches because they are branches in the flow of
execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need than two branches. One way to
express a computation like that i€hained conditionat

if x <y

printt ' x is less than 'y ')
elif x > vy:

printi ' x is greater than y ")
else:

printft ' x and y are equal ')

elif is an abbreviation of “else if.” Again, exactly one brancliwe executed. There is no limit on
the number otlif statements. If there is atse clause, it has to be at the end, but there doesn’t
have to be one.

if choice == a':
draw_a()

elif choice == "b':
draw_b()

elif choice ==
draw_c()

Each condition is checked in order. If the first is false, teetis checked, and so on. If one of them
is true, the corresponding branch executes, and the statemds. Even if more than one condition
is true, only the first true branch executes.

42 Chapter 5. Conditionals and recursion

5.7 Nested conditionals

One conditional can also be nested within another. We coane lritten the trichotomy example
like this:

if x ==y:
printf(' x and y are equal ')
else:
if x <y
printt ' x is less than 'y ')
else:
print(' x is greater than y ")

The outer conditional contains two branches. The first braontains a simple statement. The sec-
ond branch contains anothiér statement, which has two branches of its own. Those two besnc
are both simple statements, although they could have bewstitmmal statements as well.

Although the indentation of the statements makes the stre@pparenthested conditionalsbe-
come difficult to read very quickly. In general, it is a goodado avoid them when you can.

Logical operators often provide a way to simplify nestedditonal statements. For example, we
can rewrite the following code using a single conditional:

if 0 <x
if x < 10:
printi ' x is a positive single-digit number. ")

Theprint function is executed only if we make it past both conditienab we can get the same
effect with theand operator:

if 0 <xand x < 10
printi ' x is a positive single-digit number. ")

5.8 Recursion

It is legal for one function to call another; it is also legat & function to call itself. It may not be
obvious why that is a good thing, but it turns out to be one efrttost magical things a program can
do. For example, look at the following function:

def countdown(n):
if n <=0
print((' Blastofft ')
else:
print(n)
countdown(n-1)

If nis 0 or negative, it outputs the word, “Blastoff!” Otherwjsisoutputsn and then calls a function
namedcountdown —itself—passing1-1 as an argument.

What happens if we call this function like this?

>>> countdown(3)

5.9. Stack diagrams for recursive functions 43

The execution otountdown begins withn=3, and sincen is greater than 0, it outputs the value 3,
and then calls itself...

The execution otountdown begins withn=2, and sincen is greater than 0, it outputs
the value 2, and then calls itself...

The execution ofountdown begins withn=1, and sincen is greater than 0,
it outputs the value 1, and then calls itself...

The execution ofountdown begins withn=0, and sincen is not
greater than 0, it outputs the word, “Blastoff!” and theruras.

Thecountdown that gotn=1 returns.
Thecountdown that gotn=2 returns.

Thecountdown that gotn=3 returns.
And then you're back in_main__ . So, the total output looks like this:

3
2
1
Blastoff!

A function that calls itself isecursive; the process is callegcursion.
As another example, we can write a function that prints agtritimes.

def print_n(s, n):
if n <=0:
return
print(s)
print_n(s, n-1)

If n <= 0 thereturn statement exits the function. The flow of execution immesyateturns to the
caller, and the remaining lines of the function are not etextu

The rest of the function is similar twuntdown : if n is greater than 0, it displayssand then calls
itself to displays n— 1 additional times. So the number of lines of outputis (n - 1) , which
adds up tan.

For simple examples like this, it is probably easier to ufe aloop. But we will see examples later
that are hard to write with far loop and easy to write with recursion, so it is good to startyea

5.9 Stack diagrams for recursive functions

In Section 3.10, we used a stack diagram to represent tleedftatprogram during a function call.
The same kind of diagram can help interpret a recursive fonct

Every time a function gets called, Python creates a newimmétame, which contains the function’s
local variables and parameters. For a recursive functimretmight be more than one frame on the
stack at the same time.

This figure shows a stack diagram fmuntdown called withn = 3:

44 Chapter 5. Conditionals and recursion

__main__

countdown n— 3
countdown n— 2
countdown n—1
countdown n—0

As usual, the top of the stack is the frame fomain__ . It is empty because we did not create any
variablesin_main__ or pass any arguments to it.

The fourcountdown frames have different values for the parameterThe bottom of the stack,
wheren=0, is called thebase caselt does not make a recursive call, so there are no more frames

Draw a stack diagram fqwint n called withs = ' Hello ' andn=2.

Write a function calledio_n that takes a function object and a numinegs arguments,
and that calls the given functiontimes.

5.10 Infinite recursion

If a recursion never reaches a base case, it goes on makimgikeccalls forever, and the program
never terminates. This is known edinite recursion, and it is generally not a good idea. Here is a
minimal program with an infinite recursion:

def recurse():
recurse()

In most programming environments, a program with infiniteursion does not really run forever.
Python reports an error message when the maximum recursjh & reached:

File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse
File "<stdin>", line 2, in recurse

File "<stdin>", line 2, in recurse
RuntimeError: Maximum recursion depth exceeded

This traceback is a little bigger than the one we saw in theipos chapter. When the error occurs,
there are 100@curse frames on the stack!

5.11. Keyboard input 45

5.11 Keyboard input

The programs we have written so far are a bit rude in the séréehey accept no input from the
user. They just do the same thing every time.

Python provides a built-in function callédput that gets input from the keyboard. When this
function is called, the program stops and waits for the usdype something. When the user
presse®Return or Enter, the program resumes amgut returns what the user typed as a string.

>>> inp = input()

What are you waiting for?
>>> print(inp)

What are you waiting for?

Before getting input from the user, it is a good idea to pript@ampt telling the user what to input.
input can take a prompt as an argument:

>>> name = input(' What...is your name?\n ")
What...is your name?

Arthur, King of the Britons!

>>> print(name)

Arthur, King of the Britons!

The sequence at the end of the prompt representaewline, which is a special character that
causes a line break. That's why the user’s input appearsitielprompt.

If you expect the user to type an integer, you can try to cdritaerreturn value tnt :

>>> prompt = ' What...is the airspeed velocity of an unladen swallow?\n
>>> speed = input(prompt)

What...is the airspeed velocity of an unladen swallow?

17

>>> int(speed)

17

But if the user types something other than a string of digits, get an error:

>>> speed = input(prompt)
What...is the airspeed velocity of an unladen swallow?
What do you mean, an Africa
n or a European swallow?
>>> int(speed)
Traceback (most recent call last):
File "<pyshell#8>", line 1, in <module>

int(speed)
ValueError: invalid literal for int() with base 10: " What do you mean, an Africa
n or a European swallow? '

We will see how to handle this kind of error later.

5.12 Debugging

The traceback Python displays when an error occurs congalas of information, but it can be
overwhelming, especially when there are many frames ontdeks The most useful parts are

46 Chapter 5. Conditionals and recursion

usually:

* What kind of error it was, and

* Where it occurred.

Syntax errors are usually easy to find, but there are a fewhgetd/Vhitespace errors can be tricky
because spaces and tabs are invisible and we are used tmgytham.

>> x =5
>>> y:6
y =6

SyntaxError: unexpected indent

In this example, the problem is that the second line is inetbibly one space. But the error mes-
sage points tg, which is misleading. In general, error messages indicéeravthe problem was
discovered, but the actual error might be earlier in the cedmetimes on a previous line.

The same is true of runtime errors. Suppose you are tryin@nopate a signal-to-noise ratio in
decibels. The formula iSNRg, = 1010g;o(Psgnal /Proise). In Python, you might write something
like this:

import math

signal_power = 9

noise_power = 10

ratio = signal_power // noise_power
decibels = 10 * math.log10(ratio)
print(decibels)

But when you run it, you get an error message:

Traceback (most recent call last):
File "snr.py", line 5, in ?
decibels = 10 * math.log10(ratio)
ValueError: math domain error

The error message indicates line 5, but there is nothing gwdth that line. To find the real error,
it might be useful to print the value aftio , which turns out to be 0. The problem is in line 4,
because the operatir does floor division. Replacing this operator with normaligion / will
solve the problem.

In general, error messages tell you where the problem was\dised, but that is often not where it
was caused.

5.13 Glossary

modulus operator: An operator, denoted with a percent sidf, that works on integers and yields
the remainder when one number is divided by another.

boolean expression:An expression whose value is eitliene or False .

relational operator: One of the operators that compares its operasdd=, >, <, >=, and<=.

5.14. Exercises 47

logical operator: One of the operators that combines boolean expressaodsor , andnot .

conditional statement: A statement that controls the flow of execution dependingamnescondi-
tion.

condition: The boolean expression in a conditional statement thatrdetes which branch is exe-
cuted.

compound statement: A statement that consists of a header and a body. The headiemsth a
colon (:). The body is indented relative to the header.

branch: One of the alternative sequences of statements in a conalititatement.
chained conditional: A conditional statement with a series of alternative brasch

nested conditional: A conditional statement that appears in one of the branchasaiher condi-
tional statement.

recursion: The process of calling the function that is currently exaaut
base case:A conditional branch in a recursive function that does nokemarecursive call.

infinite recursion: A recursion that doesn’'t have a base case, or never reachegdntually, an
infinite recursion causes a runtime error.

5.14 Exercises

Exercise 5.1 Fermat's Last Theorem says that there are no integérsandc such that

a"+b"=c"
for any values ofi greater than 2.

1. Write a function namecheck fermat that takes four parameterssh, ¢ andn—and that
checks to see if Fermat's theorem holds I§ greater than 2 and it turns out to be true that

a'+p"=c"

the program should print, “Holy smokes, Fermat was wrongfigdwise the program should
print, “No, that doesn’t work.”

2. Write a function that prompts the user to input valuesafob, ¢ andn, converts them to
integers, and usabheck fermat to check whether they violate Fermat's theorem.

Exercise 5.2 1f you are given three sticks, you may or may not be able towgedhem in a triangle.
For example, if one of the sticks is 12 inches long and therdthe are one inch long, it is clear
that you will not be able to get the short sticks to meet in thddbe. For any three lengths, there is
a simple test to see if it is possible to form a triangle:

“If any of the three lengths is greater than the sum of therdthe, then you cannot
form a triangle. Otherwise, you chh

11f the sum of two lengths equals the third, they form what itedsa “degenerate” triangle.

48

Chapter 5. Conditionals and recursion

1

2

. Write a function name_triangle that takes three integers as arguments, and that prints

either “Yes” or “No,” depending on whether you can or canrmtif a triangle from sticks
with the given lengths.

. Write a function that prompts the user to input three déicigths, converts them to integers,

and usess_triangle to check whether sticks with the given lengths can form aglie.

The following exercises use TurtleWorld from Chapter 4:

Exercise 5.3Read the following function and see if you can figure out whalbies. Then run it
(see the examples in Chapter 4).

def draw(t, length, n):

if n ==

return
angle = 50
fd(t, length*n)
It(t, angle)
draw(t, length, n-1)
r(t, 2*angle)
draw(t, length, n-1)
It(t, angle)
bk(t, length*n)

Exercise 5.4 The Koch curve is a fractal that looks something like this:

To draw a Koch curve with lengtk all you have to do is

A w0N

o

7.

Draw a Koch curve with lengtk/3.
Turn left 60 degrees.

Draw a Koch curve with lengtk/3.
Turn right 120 degrees.

Draw a Koch curve with lengtk/3.
Turn left 60 degrees.

Draw a Koch curve with lengtk/3.

The only exception is ik is less than 3. In that case, you can just draw a straight littelengthx.

1.

Write a function calledoch that takes a turtle and a length as parameters, and thatheses t
turtle to draw a Koch curve with the given length.

5.14. Exercises 49

2. Write a function callednowflake that draws three Koch curves to make the outline of a
snowflake.
You can see my solution #tinkpython.com/code/koch.py

3. The Koch curve can be generalized in several ways. v@agedia.org/wiki/Koch_
snowflake for examples and implement your favorite.

50

Chapter 5. Conditionals and recursion

Chapter 6

Fruitful functions

6.1 Return values

Some of the built-in functions we have used, such as the nuatttibns, produce results. Calling
the function generates a value, which we usually assign triable or use as part of an expression.

e = math.exp(1.0)
height = radius * math.sin(radians)

All of the functions we have written so far are void; they piomething or move turtles around,
but their return value islone.

In this chapter, we are (finally) going to write fruitful futiens. The first example igrea , which
returns the area of a circle with the given radius:

def area(radius):
temp = math.pi * radius**2
return temp

We have seen threturn ~ statement before, but in a fruitful function treturn statement includes
an expression. This statement means: “Return immediataty this function and use the following
expression as the return value.” The expression can beailyitcomplicated, so we could have
written this function more concisely:

def area(radius):
return math.pi * radius**2

On the other handemporary variables like temp often make debugging easier.
Sometimes it is useful to have multiple return statememts,in each branch of a conditional:

def absolute_value(x):
if x <0
return -x
else:
return x

52 Chapter 6. Fruitful functions

Since theseeturn statements are in an alternative conditional, only onebwilexecuted.

As soon as a return statement executes, the function tetesimathout executing any subsequent
statements. Code that appears aftetian statement, or any other place the flow of execution can
never reach, is calledead code

In a fruitful function, it is a good idea to ensure that eveoggible path through the program hits a
return statement. For example:

def absolute_value(x):
if x <0:
return -x
if x > 0:
return x

This function is incorrect becausexfhappens to be 0, neither condition is true, and the function
ends without hitting aeturn statement. If the flow of execution gets to the end of a fumctibe
return value isNone, which is not the absolute value of 0.

>>> print absolute_value(0)
None

By the way, Python provides a built-in function callgas that computes absolute values.

Exercise 6.1 Write acompare functionthatreturngif x > y,0if x == y,and-1 if x < y.

6.2 Incremental development

As you write larger functions, you might find yourself spargimore time debugging.

To deal with increasingly complex programs, you might wantry a process callethcremental
development The goal of incremental development is to avoid long deingygessions by adding
and testing only a small amount of code at a time.

As an example, suppose you want to find the distance betweepdints, given by the coordinates
(x1,y1) and(xz,y2). By the Pythagorean theorem, the distance is:

distance= \/(xz —X1)?+ (Y2 — y1)?

The first step is to consider whatistance function should look like in Python. In other words,
what are the inputs (parameters) and what is the output(realue)?

In this case, the inputs are two points, which you can reptesgng four numbers. The return value
is the distance, which is a floating-point value.

Already you can write an outline of the function:

def distance(xl, y1, x2, y2):
return 0.0

Obviously, this version doesn’t compute distances; it gbveturns zero. But it is syntactically
correct, and it runs, which means that you can test it befotenyake it more complicated.

To test the new function, call it with sample arguments:

6.2. Incremental development 53

>>> distance(1, 2, 4, 6)
0.0

| chose these values so that the horizontal distance is 3haenekttical distance is 4; that way, the
resultis 5 (the hypotenuse of a 3-4-5 triangle). When tgstifunction, it is useful to know the right
answer.

At this point we have confirmed that the function is syntaatjccorrect, and we can start adding
code to the body. A reasonable next step is to find the differexp — x; andy, —y;. The next
version stores those values in temporary variables antspgham.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
print(" dx is ', dx)
printt " dy is ', dy)
return 0.0

If the function is working, it should displaydx is 3 ' and'dy is 4 . If so, we know that the
function is getting the right arguments and performing th&t iomputation correctly. If not, there
are only a few lines to check.

Next we compute the sum of squaresiofanddy:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
print(' dsquared is: ', dsquared)
return 0.0

Again, you would run the program at this stage and check thgub@which should be 25). Finally,
you can usenath.sqrt to compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 -yl
dsquared = dx**2 + dy**2
result = math.sgrt(dsquared)
return result

If that works correctly, you are done. Otherwise, you mightwto print the value aksult before
the return statement.

The final version of the function doesn’t display anythingemht runs; it only returns a value.
Theprint statements we wrote are useful for debugging, but once ybthgdunction working,
you should remove them. Code like that is calée@ffolding because it is helpful for building the
program but is not part of the final product.

When you start out, you should add only a line or two of code #a. As you gain more ex-
perience, you might find yourself writing and debugging leigghunks. Either way, incremental
development can save you a lot of debugging time.

The key aspects of the process are:

54 Chapter 6. Fruitful functions

1. Start with a working program and make small incrementahges. At any point, if there is
an error, you should have a good idea where it is.

2. Use temporary variables to hold intermediate values siccgn display and check them.

3. Once the program is working, you might want to remove sofbeeoscaffolding or consoli-
date multiple statements into compound expressions, byffahdoes not make the program
difficult to read.

Exercise 6.2 Use incremental development to write a function caligabtenuse that returns the
length of the hypotenuse of a right triangle given the leagththe two legs as arguments. Record
each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function fronhimianother. This ability is called
composition

As an example, we’'ll write a function that takes two poink® tenter of the circle and a point on
the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variakteandyc, and the perimeter point is p
andyp. The first step is to find the radius of the circle, which is tigahce between the two points.
We just wrote a functiorgistance , that does that:

radius = distance(xc, yc, xp, Yyp)

The next step is to find the area of a circle with that radiusjusewrote that, too:
result = area(radius)

Encapsulating these steps in a function, we get:

def circle_area(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

The temporary variablesdius andresult are useful for development and debugging, but once
the program is working, we can make it more concise by conmgaie function calls:

def circle_area(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

6.4 Boolean functions

Functions can return booleans, which is often conveniertifting complicated tests inside func-
tions. For example:

def is_divisible(x, y):
if x % y==0;
return True
else:
return False

6.5. More recursion 55

It is common to give boolean functions names that sound lé®'no questionss_divisible
returns eitheilrue or False to indicate whethex is divisible byy.

Here is an example:

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

The result of thee= operator is a boolean, so we can write the function more sehcby returning
it directly:

def is_divisible(x, y):
return x % y == 0

Boolean functions are often used in conditional statements

if is_divisible(x, y):
print(' x is divisible by y ")

It might be tempting to write something like:

if is_divisible(x, y) == True:
print(' x is divisible by y ")

But the extra comparison is unnecessary.

Exercise 6.3Write a functionis_between(x, v, z) that returnsTrue if x <y < z or False
otherwise.

6.5 More recursion

We have only covered a small subset of Python, but you mighintegested to know that this
subset is @omplete programming language, which means that anything that carotmputed can
be expressed in this language. Any program ever writterddo@lrewritten using only the language
features you have learned so far (actually, you would neesdlvacbmmands to control devices like
the keyboard, mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accompdidhoy Alan Turing, one of the first com-
puter scientists (some would argue that he was a matheamgthit a lot of early computer scientists
started as mathematicians). Accordingly, it is known adltiming Thesis. For a more complete (and
accurate) discussion of the Turing Thesis, | recommend dMitBipser’s bookntroduction to the
Theory of Computation.

To give you an idea of what you can do with the tools you havenkedhso far, we'll evaluate a few
recursively defined mathematical functions. A recursiviinitéon is similar to a circular definition,
in the sense that the definition contains a reference to thg theing defined. A truly circular
definition is not very useful:

frabjous: An adjective used to describe something that is frabjous.

56 Chapter 6. Fruitful functions

If you saw that definition in the dictionary, you might be agad. On the other hand, if you looked
up the definition of the factorial function, denoted with gymbol !, you might get something like
this:

0=1

n' =n(n—1)!

This definition says that the factorial of 0 is 1, and the faetmf any other valuen, is n multiplied
by the factorial oh — 1.

So 3lis 3 times 2!, which is 2 times 1!, which is 1 times 0!. ingtit all together, 3! equals 3 times
2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you caually write a Python program to
evaluate it. The first step is to decide what the parametenddhve. In this case it should be clear
thatfactorial takes an integer:

def factorial(n):
If the argument happens to be 0, all we have to do is return 1:

def factorial(n):
if n ==
return 1

Otherwise, and this is the interesting part, we have to maieearsive call to find the factorial of
n— 1 and then multiply it byn:

def factorial(n):
if n ==
return 1
else:
recurse = factorial(n-1)
result = n * recurse
return result

The flow of execution for this program is similar to the flowcofintdown in Section 5.8. If we call
factorial with the value 3:

Since 3 is not 0, we take the second branch and calculatedtuogitd ofn-1 ...

Since 2 is not 0, we take the second branch and calculatedtoitd ofn-1 ...

Since 1 is not 0, we take the second branch and calculate tharitd of
n-1..

Since 0is 0, we take the first branch and return 1 without making
any more recursive calls.

The return value (1) is multiplied by, which is 1, and the result is returned.
The return value (1) is multiplied by, which is 2, and the result is returned.

The return value (2) is multiplied by, which is 3, and the result, 6, becomes the return value of the
function call that started the whole process.

Here is what the stack diagram looks like for this sequendarudtion calls:

6.6. Leap of faith 57

__main__

»

factorial n— 3 recurse — 2 result—= 6

factorial n— 2 recurse— 1 result——= 2

[EEN

factorial n—1 recurse— 1 result—=1

AN AN AN

factorial n—20

The return values are shown being passed back up the staekclnframe, the return value is the
value ofresult , which is the product ofi andrecurse

In the last frame, the local variablescurse andresult do not exist, because the branch that
creates them does not execute.

6.6 Leap of faith

Following the flow of execution is one way to read programsijttan quickly become labyrinthine.
An alternative is what | call the “leap of faith.” When you cento a function call, instead of
following the flow of execution, yoassume that the function works correctly and returns the right
result.

In fact, you are already practicing this leap of faith whem yse built-in functions. When you call
math.cos ormath.exp , you don’t examine the bodies of those functions. You justies that they
work because the people who wrote the built-in functionsewggrod programmers.

The same is true when you call one of your own functions. Fanele, in Section 6.4, we wrote
a function calleds_divisible that determines whether one number is divisible by anotbece
we have convinced ourselves that this function is corregt-examining the code and testing—we
can use the function without looking at the body again.

The same is true of recursive programs. When you get to thesie call, instead of following
the flow of execution, you should assume that the recursivevoseks (yields the correct result) and
then ask yourself, “Assuming that | can find the factoriahef 1, can | compute the factorial of?”

In this case, it is clear that you can, by multiplying tay

Of course, it's a bit strange to assume that the function wodirectly when you haven't finished
writing it, but that's why it's called a leap of faith!

6.7 One more example

After factorial , the most common example of a recursively defined matheatdtiaction is
fibonacci , which has the following definition

1seewikipedia.org/wiki/Fibonacci_number

58 Chapter 6. Fruitful functions

fibonacc{0) =0
fibonacc{l) =1
fibonaccin) = fibonacc{n — 1) + fibonaccin — 2);

Translated into Python, it looks like this:

def fibonacci (n):
if n == 0:
return 0
elf n==1
return 1
else:
return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for fairgnall values of, your head explodes.
But according to the leap of faith, if you assume that the tacursive calls work correctly, then it
is clear that you get the right result by adding them together

6.8 Checking types

What happens if we caféctorial and give it 1.5 as an argument?

>>> factorial(1.5)
RuntimeError; maximum recursion depth exceeded in compari son

It looks like an infinite recursion. But how can that be? Thera base case—when== 0. But if
n is not an integer, we camiss the base case and recurse forever.

In the first recursive call, the value ofis 0.5. In the next, it is -0.5. From there, it gets smaller
(more negative), but it will never be 0.

We have two choices. We can try to generalizeftiatorial function to work with floating-point
numbers, or we can makKactorial check the type of its argument. The first option is called the
gamma functiofiand it’s a little beyond the scope of this book. So we’ll gotloe second.

We can use the built-in functioginstance to verify the type of the argument. While we're at it,
we can also make sure the argument is positive:

def factorial (n):

if not isinstance(n, int):
print(' Factorial is only defined for integers. ")
return None

elif n < 0:
print(' Factorial is not defined for negative integers. ")
return None

elif n ==
return 1

else:
return n * factorial(n-1)

2Seewikipedia.org/wiki/Gamma_function

6.9. Debugging 59

The first base case handles nonintegers; the second cawhatve integers. In both cases, the
program prints an error message and retilore to indicate that something went wrong:

>>> factorial("fred ')
Factorial is only defined for integers.
None

>>> factorial(-2)
Factorial is not defined for negative integers.
None

If we get past both checks, then we know thé& positive or zero, so we can prove that the recursion
terminates.

This program demonstrates a pattern sometimes caltgdhedian. The first two conditionals act
as guardians, protecting the code that follows from valhasmight cause an error. The guardians
make it possible to prove the correctness of the code.

6.9 Debugging

Breaking a large program into smaller functions createsrahtheckpoints for debugging. If a
function is not working, there are three possibilities tosider:

« There is something wrong with the arguments the functiagetsing; a precondition is vio-
lated.

» There is something wrong with the function; a postcondit®violated.
« There is something wrong with the return value or the way kiging used.

To rule out the first possibility, you can addpant call at the beginning of the function and
display the values of the parameters (and maybe their ty@es)ou can write code that checks the
preconditions explicitly.

If the parameters look good, adg@nt statement before eactturn statement that displays the
return value. If possible, check the result by hand. Comsid#ing the function with values that
make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function ¢alinake sure the return value is being
used correctly (or used at all!).

Adding print calls at the beginning and end of a function calptmake the flow of execution more
visible. For example, here is a versionfadtorial with print statements:

def factorial(n):

space = "' * (4 *n)

print(space, ' factorial ', n)

if n == 0:
print(space, "returning 1 ')
return 1

else:

recurse = factorial(n-1)
result = n * recurse
print(space, ' returning
return result

, result)

60 Chapter 6. Fruitful functions

space is a string of space characters that controls the indemtafithe output. Here is the result of
factorial(5)

factorial 5
factorial 4
factorial 3
factorial 2
factorial 1
factorial 0
returning 1
returning 1
returning 2
returning 6
returning 24
returning 120
120

If you are confused about the flow of execution, this kind ofpot can be helpful. It takes some
time to develop effective scaffolding, but a little bit ofedfolding can save a lot of debugging.

6.10 Glossary
temporary variable: A variable used to store an intermediate value in a complextzdion.

dead code: Part of a program that can never be executed, often becaagpears after geturn
statement.

None: A special value returned by functions that have no returtestant or a return statement
without an argument.

incremental development: A program development plan intended to avoid debugging lolrad
and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not pénedinal version.

guardian: A programming pattern that uses a conditional statemenhéelcfor and handle cir-
cumstances that might cause an error.

6.11 Exercises

Exercise 6.4 Draw a stack diagram for the following program. What doesptugram print?

def b(2):
prod = a(z, 2)
print(z, prod)
return prod

def a(x, y):
X=x+1
return x * vy

6.11. Exercises 61

def c(x, vy, 2):
sum = X +y + z
pow = b(sum)**2

return pow
x=1
y=x+1

print(c(x, y+3, x+y))

Exercise 6.5 The Ackermann function(m,n), is defined:

n+1 ifm=0
A(mn) =< A(m—1,1) if m>0andn=0 (6.1)
A(m—1,A(mn—1)) if m>0andn>0.

Write a function namedck that evaluates Ackerman’s function. Use your function teleate
ack(3, 4) , which should be 125. What happens for larger valugsaridn?

Exercise 6.6 A palindrome is a word that is spelled the same backward arvdafal, like “noon”
and “redivider”. Recursively, a word is a palindrome if thesfiand last letters are the same and the
middle is a palindrome.

The following are functions that take a string argument adrn the first, last, and middle letters:

def first(word):
return word[0]

def last(word):
return word[-1]

def middle(word):
return word[1:-1]

We'll see how they work in Chapter 8.

1. Type these functions into a file namgalindrome.py and test them out. What happens if
you callmiddle with a string with two letters? One letter? What about the gnstring,
which is written" and contains no letters?

2. Write a function calleds_palindrome that takes a string argument and retufng if it is
a palindrome anffalse otherwise. Remember that you can use the built-in fundéonto
check the length of a string.

Exercise 6.7 A number,a, is a power ofb if it is divisible by b anda/b is a power ofb. Write a
function calleds_power that takes parameteasandb and returngrue if a is a power ob.

Exercise 6.8 The greatest common divisor (GCD)afndb is the largest number that divides both
of them with no remaindér

3Seewikipedia.org/wiki/Ackermann_function .
4This exercise is based on an example from Abelson and Suss8tarcture and I nterpretation of Computer Programs.

62 Chapter 6. Fruitful functions

One way to find the GCD of two numbers is Euclid’s algorithmjebhis based on the observation
that if r is the remainder wheais divided byb, thengcd(a,b) = gcd(b,r). As a base case, we can
considemgcd(a,0) = a.

Write a function calledjcd that takes parametesisandb and returns their greatest common divisor.
If you need help, sewikipedia.org/wiki/Euclidean_algorithm

Chapter 7

lteration

7.1 Multiple assignment

As you may have discovered, it is legal to make more than osigrament to the same variable. A
new assignment makes an existing variable refer to a neve ¢ahd stop referring to the old value).

bruce = 5
print bruce,
bruce = 7
print bruce

The output of this program i§ 7, because the first timaruce is printed, its value is 5, and the
second time, its value is 7. The comma at the end of the ffinst statement suppresses the
newline, which is why both outputs appear on the same line.

Here is whamultiple assignmentlooks like in a state diagram:

bruce
\7

With multiple assignment it is especially important to gliguish between an assignment operation
and a statement of equality. Because Python uses the egndtsfor assignment, it is tempting to
interpret a statement likee = b as a statement of equality. It is not!

First, equality is a symmetric relation and assignment ts Ror example, in mathematics,af= 7
then 7= a. But in Python, the statemeat= 7 is legal and’ = a is not.

Furthermore, in mathematics, a statement of equality leeitrue or false, for all time. l&=Db
now, thena will always equab. In Python, an assignment statement can make two variatples,e
but they don’t have to stay that way:

a=>5
b=a # a and b are now equal
a=3 # a and b are no longer equal

64 Chapter 7. lteration

The third line changes the value@but does not change the valuehgfso they are no longer equal.

Although multiple assignment is frequently helpful, yowshd use it with caution. If the values of
variables change frequently, it can make the code diffiouleaid and debug.

7.2 Updating variables

One of the most common forms of multiple assignment isipdate, where the new value of the
variable depends on the old.

X = x+1
This means “get the current valuexafadd one, and then updatavith the new value.”

If you try to update a variable that doesn’t exist, you get@arebecause Python evaluates the right
side before it assigns a valuexo

>>> X = x+1
NameError: name

X' is not defined

Before you can update a variable, you haventbalize it, usually with a simple assignment:

>>> X 0
>>> X = x+1

Updating a variable by adding 1 is callediasrement; subtracting 1 is called decrement

7.3 Thewhile statement

Computers are often used to automate repetitive tasks.aRegedentical or similar tasks without
making errors is something that computers do well and pedpfeoorly.

We have seen two programmuntdown andprint_n , that use recursion to perform repetition,
which is also calledteration. Because iteration is so common, Python provides severgukge
features to make it easier. One is the statement we saw in Section 4.2. We'll get back to that
later.

Another is thewhile statement. Here is a versionafuntdown that uses avhile statement:

def countdown(n):
while n > 0:
print n
n=nl

print(' Blastofft ')

You can almost read thehile statement as if it were English. It means, “Whilés greater than
0, display the value of and then reduce the value mby 1. When you get to 0, display the word
Blastoffl "

More formally, here is the flow of execution fomdiile statement:

1. Evaluate the condition, yieldirngue or False .

7.4. break 65

2. Ifthe condition is false, exit thehile statement and continue execution at the next statement.

3. Ifthe condition is true, execute the body and then go backdp 1.

This type of flow is called éoop because the third step loops back around to the top.

The body of the loop should change the value of one or morabi&s so that eventually the condi-
tion becomes false and the loop terminates. Otherwise tiewdll repeat forever, which is called
aninfinite loop. An endless source of amusement for computer scientidig isliservation that the
directions on shampoo, “Lather, rinse, repeat,” are aniteflnop.

In the case ofountdown , we can prove that the loop terminates because we know thattbe of
n is finite, and we can see that the valuena@fets smaller each time through the loop, so eventually
we have to get to 0. In other cases, it is not so easy to tell:

def sequence(n):

while n = 1:
print(n)
if n%2 == 0: # n is even
n=n/2
else: # n is odd
n = n*3+1

The condition for this loop is = 1, so the loop will continue untih is 1, which makes the
condition false.

Each time through the loop, the program outputs the valweanfd then checks whether it is even or
odd. Ifit is evenn is divided by 2. If it is odd, the value afis replaced witm*3+1 . For example,
if the argument passed $equence is 3, the resulting sequence is 3, 10, 5, 16, 8, 4, 2, 1.

Sincen sometimes increases and sometimes decreases, there isioosoproof than will ever
reach 1, or that the program terminates. For some partiealaes ofn, we can prove termination.
For example, if the starting value is a power of two, then takie ofn will be even each time
through the loop until it reaches 1. The previous example evith such a sequence, starting with
16.

The hard question is whether we can prove that this progreminates forall positive values of n.
So far, no one has been able to proveitdisprove it!

Exercise 7.1 Rewrite the functioprint_ n from Section 5.8 using iteration instead of recursion.

7.4 break

Sometimes you don’t know it's time to end a loop until you gelf kvay through the body. In that
case you can use tieeak statement to jump out of the loop.

For example, suppose you want to take input from the uselrtheti typedone. You could write:
while True:

line = input("> ")
if line == " done’ :

1seewikipedia.org/wiki/Collatz_conjecture

66 Chapter 7. lteration

break
print(line)

print(' Done! ')
The loop condition iFrue , which is always true, so the loop runs until it hits the brettement.

Each time through, it prompts the user with an angle brackethe user typesione, the break
statement exits the loop. Otherwise the program echoeswdrathe user types and goes back to
the top of the loop. Here’s a sample run:

> not done
not done

> done
Done!

This way of writingwhile loops is common because you can check the condition anyvihere
the loop (not just at the top) and you can express the stopittamdffirmatively (“stop when this
happens”) rather than negatively (“keep going until thadgens.”).

7.5 Square roots

Loops are often used in programs that compute numericaltsesy starting with an approximate
answer and iteratively improving it.

For example, one way of computing square roots is Newtont¥hate Suppose that you want to
know the square root @& If you start with almost any estimate,you can compute a better estimate
with the following formula:

_ X+a/x
2
For example, iais 4 andx is 3:
>>> a = 4.0
>>> x = 3.0

>>>y = (x + a2
>>> print(y)
2.1666666666666665

Which is closer to the correct answear4 = 2). If we repeat the process with the new estimate, it
gets even closer:

>>> X =y
>>>y = (x + ak /2
>>> print(y)
2.0064102564102564

After a few more updates, the estimate is almost exact:

>>> X =y
>>>y = (x + ak /2
>>> print(y)

7.6. Algorithms 67

2.0000102400262145
>>> X =y
>>>y = (x + ak /2
>>> print(y)
2.0000000000262146

In general we don’t know ahead of time how many steps it tati@get to the right answer, but we
know when we get there because the estimate stops changing:

>>> X = y
>>>y = (x + a2
>>> print(y)

2.0

>>> X = y
>>>y = (x + ak /2
>>> print(y)

2.0

Wheny == x, we can stop. Here is a loop that starts with an initial esting and improves it
until it stops changing:

while True:
print(x)
y=(x+akXx /2
ify == x
break
X =y

For most values od this works fine, but in general it is dangerous to flest equality. Floating-
point values are only approximately right: most rationainiers, like 13, and irrational numbers,
like v/2, can’t be represented exactly withiaat

Rather than checking whetheandy are exactly equal, it is safer to use the built-in functébs to
compute the absolute value, or magnitude, of the differeteeen them:

if abs(y-x) < epsilon;
break

Whereepsilon has a value lik®.0000001 that determines how close is close enough.

Exercise 7.2 Encapsulate this loop in a function calleglare_root that takesa as a parameter,
chooses a reasonable valupfnd returns an estimate of the square roat. of

7.6 Algorithms

Newton’s method is an example of atgorithm: it is a mechanical process for solving a category
of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to startmgomething that is not an algorithm.
When you learned to multiply single-digit numbers, you @bly memorized the multiplication
table. In effect, you memorized 100 specific solutions. Kirad of knowledge is not algorithmic.

68 Chapter 7. lteration

But if you were “lazy,” you probably cheated by learning a fewks. For example, to find the
product ofn and 9, you can write — 1 as the first digit and 18 n as the second digit. This trick is
a general solution for multiplying any single-digit numlisgr9. That’s an algorithm!

Similarly, the techniques you learned for addition withrgarg, subtraction with borrowing, and
long division are all algorithms. One of the charactergst€ algorithms is that they do not require
any intelligence to carry out. They are mechanical process#hich each step follows from the
last according to a simple set of rules.

In my opinion, it is embarrassing that humans spend so mueé ith school learning to execute
algorithms that, quite literally, require no intelligence

On the other hand, the process of designing algorithmsesésting, intellectually challenging, and
a central part of what we call programming.

Some of the things that people do naturally, without diffigwr conscious thought, are the hardest
to express algorithmically. Understanding natural lamguia a good example. We all do it, but so
far no one has been able to explaow we do it, at least not in the form of an algorithm.

7.7 Debugging

As you start writing bigger programs, you might find yoursgénding more time debugging. More
code means more chances to make an error and more place fotdduige.

One way to cut your debugging time is “debugging by bisectibor example, if there are 100 lines
in your program and you check them one at a time, it would t&Kesteps.

Instead, try to break the problem in half. Look at the middigéhe program, or near it, for an
intermediate value you can check. Adgrmt call (or something else that has a verifiable effect)
and run the program.

If the mid-point check is incorrect, there must be a problarthi first half of the program. If it is
correct, the problem is in the second half.

Every time you perform a check like this, you halve the numifdines you have to search. After
six steps (which is fewer than 100), you would be down to ortevollines of code, at least in theory.

In practice it is not always clear what the “middle of the pag” is and not always possible to
check it. It doesn’'t make sense to count lines and find theter@tpoint. Instead, think about
places in the program where there might be errors and plalcessvit is easy to put a check. Then
choose a spot where you think the chances are about the satfehbug is before or after the
check.

7.8 Glossary

multiple assignment: Making more than one assignment to the same variable dureegxecution
of a program.

update: An assignment where the new value of the variable dependssooid.
initialization: An assignment that gives an initial value to a variable thiitbg updated.

increment: An update that increases the value of a variable (often by.one

7.9. Exercises 69

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either esieetunction call or a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

7.9 Exercises

Exercise 7.3 To test the square root algorithm in this chapter, you coafdgare it withmath.sqrt
Write a function namedtest_square_root that prints a table like this:

10 1.0 1.0 0.0

2.0 1.41421356237 1.41421356237 2.22044604925e-16
3.0 1.73205080757 1.73205080757 0.0

40 20 2.0 0.0

5.0 2.2360679775 2.2360679775 0.0

6.0 2.44948974278 2.44948974278 0.0

7.0 2.64575131106 2.64575131106 0.0

8.0 2.82842712475 2.82842712475 4.4408920985e-16
9.0 3.0 3.0 0.0

The first columnis a numbea; the second column is the square roochebmputed with the function
from Exercise 7.2; the third column is the square root comgbtymath.sqrt ; the fourth column
is the absolute value of the difference between the two estisa

Exercise 7.4 The built-in functioneval takes a string and evaluates it using the Python interpreter
For example:

>>evall '1+2*3")

7

>>> import math

>>> eval(' math.sgrt(5) ')
2.23606797749979

>>> eval(' type(math.pi) ')
<class ' float ' >

Write a function calleckval_loop that iteratively prompts the user, takes the resulting tirgmad
evaluates it usingval , and prints the result.

It should continue until the user entérdone’ , and then return the value of the last expression it
evaluated.

Exercise 7.5 The brilliant mathematician Srinivasa Ramanujan foundhinite serie$ that can be

used to generate a numerical approximatiorcof

1 2v2 & (4K)!(1103+ 2639k)
T 9801KZo (k!)4396%

2Seewikipedia.org/wiki/Pi

70 Chapter 7. lteration

Write a function callecestimate_pi that uses this formula to compute and return an estimate of
1. It should use avhile loop to compute terms of the summation until the last ternmalker than
1le-15 (which is Python notation for 13°). You can check the result by comparing itnath. pi

You can see my solution #tinkpython.com/code/pi.py

Chapter 8

Strings

8.1 Astring is a sequence

A string is asequenceof characters. You can access the characters one at a tifméheibracket
operator:

>>> fruit = ' banana'
>>> letter = fruit[1]

The second statement selects character number 1ffudm and assigns it t&@tter

The expression in brackets is callediadex. The index indicates which character in the sequence
you want (hence the name).

But you might not get what you expect:

>>> print(letter)
a

For most people, the first letter bbanana' is b, nota. But for computer scientists, the index is an
offset from the beginning of the string, and the offset offir& letter is zero.

>>> letter = fruit[0]
>>> print(letter)
b

Sob is the Oth letter (“zero-eth”) of banana' , a is the 1th letter (“one-eth”), and is the 2th
(“two-eth”) letter.

You can use any expression, including variables and opsta® an index, but the value of the index
has to be an integer. Otherwise you get:

>>> letter = fruit[1.5]
TypeError: string indices must be integers

72 Chapter 8. Strings

8.2 len

len is a built-in function that returns the number of characiess string:

>>> fruit = ' banana'
>>> |en(fruit)
6

To get the last letter of a string, you might be tempted to énpsthing like this:

>>> length = len(fruit)
>>> last = fruit[length]
IndexError: string index out of range

The reason for théndexError is that there is no letter iibanana’ with the index 6. Since we
started counting at zero, the six letters are numbered O T et the last character, you have to
subtract 1 fronfength

>>> last = fruit[length-1]
>>> print last
a

Alternatively, you can use negative indices, which courtkipard from the end of the string. The
expressiorruit[-1] yields the last letteffuit[-2] yields the second to last, and so on.

8.3 Traversal with afor loop

A lot of computations involve processing a string one chi@raat a time. Often they start at the
beginning, select each character in turn, do something &mé continue until the end. This pattern
of processing is called maversal. One way to write a traversal is withvile loop:

index = 0

while index < len(fruit):
letter = fruit[index]
print(letter)
index = index + 1

This loop traverses the string and displays each letter dneably itself. The loop condition is

index < len(fruit) , S0 whenindex is equal to the length of the string, the condition is false,
and the body of the loop is not executed. The last charactasaed is the one with the index
len(fruit)-1 , which is the last character in the string.

Exercise 8.1 Write a function that takes a string as an argument and disyhee letters backward,
one per line.
Another way to write a traversal is withfer loop:

for char in fruit:
print(char)

Each time through the loop, the next character in the stsragsigned to the variabthar . The
loop continues until no characters are left.

8.4. String slices 73

The following example shows how to use concatenation @saoidition) and dor loop to generate
an abecedarian series (that is, in alphabetical order).olveR McCloskey’s boolkviake Way for
Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Naciack, Pack, and Quack.
This loop outputs these names in order:

prefixes = ' JKLMNOPQ
suffix = ' ack'

for letter in prefixes:
print(letter + suffix)

The outputis:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because “Ouack” and “Quack misspelled.

Exercise 8.2 Modify the program to fix this error.

8.4 String slices

A segment of a string is calledsdice Selecting a slice is similar to selecting a character:

>>> s = ' Monty Python
>>> print(s[0:5])

Monty

>>> print(s[6:12])

Python

The operatojn:m] returns the part of the string from the “n-eth” characteh®tm-eth” character,
including the first but excluding the last. This behavior @interintuitive, but it might help to
imagine the indices pointinigetween the characters, as in the following diagram:

mit—""panana’

index0123456
If you omit the first index (before the colon), the slice staat the beginning of the string. If you
omit the second index, the slice goes to the end of the string:

>>> fruit = ' banana'
>>> fruit[:3]

' ban
>>> fruit[3:]
' ana

74 Chapter 8. Strings

If the first index is greater than or equal to the second thaltressanempty string, represented by
two quotation marks:

>>> fruit = ' banana'
>>> fruit[3:3]

An empty string contains no characters and has length 0,thet than that, it is the same as any
other string.

Exercise 8.3Given thaffruit is a string, what doefsuit[:] mean?

8.5 Strings are immutable

Itis tempting to use thB operator on the left side of an assignment, with the intenticchanging
a character in a string. For example:

>>> greeting = ' Hello, world!
>>> greeting[0] = "
TypeError: object does not support item assignment

The “object” in this case is the string and the “item” is thedcter you tried to assign. For now,
anobjectis the same thing as a value, but we will refine that definitaaarl Anitem is one of the
values in a sequence.

The reason for the error is that strings arenutable, which means you can’t change an existing
string. The best you can do is create a new string that is ati@mion the original:

>>> greeting = ' Hello, world! '

>>> new_greeting = ' J' + greeting[1]
>>> print(new_greeting)

Jello, world!

This example concatenates a new first letter onto a sligeeting . It has no effect on the original
string.

8.6 Searching

What does the following function do?

def find(word, letter):
index = 0
while index < len(word):
if word[index] == letter;
return index
index = index + 1
return -1

In a sensefind is the opposite of thf operator. Instead of taking an index and extracting the
corresponding character, it takes a character and findades where that character appears. If the
character is not found, the function returths

8.7. Looping and counting 75

This is the first example we have seen akfurn statement inside a loop. Word[index] ==
letter , the function breaks out of the loop and returns immediately

If the character doesn’t appear in the string, the prograits the loop normally and returns .

This pattern of computation—traversing a sequence anchietywhen we find what we are looking
for—is called asearch

Exercise 8.4Modify find so that it has a third parameter, the indexvord where it should start
looking.

8.7 Looping and counting

The following program counts the number of times the ledtappears in a string:

word = ' banana'
count = 0
for letter in word:
if letter == "a':
count = count + 1
print(count)

This program demonstrates another pattern of computagibedcacounter. The variablecount is
initialized to 0 and then incremented each timeada found. When the loop exitspunt contains
the result—the total number afs.

Exercise 8.5 Encapsulate this code in a function nangednt , and generalize it so that it accepts
the string and the letter as arguments.

Exercise 8.6 Rewrite this function so that instead of traversing thengfrit uses the three-parameter
version offind from the previous section.

8.8 string methods

A method is similar to a function—it takes arguments and returns aeratbut the syntax is dif-
ferent. For example, the methadper takes a string and returns a new string with all uppercase
letters:

Instead of the function syntaxper(word) , it uses the method syntasord.upper()

>>> word = ' banana'

>>> new_word = word.upper()
>>> print(new_word)

BANANA

This form of dot notation specifies the name of the methupder , and the name of the string to
apply the method tayord . The empty parentheses indicate that this method takegnonant.

A method call is called amvocation; in this case, we would say that we are invokipger on the
word .

As it turns out, there is a string method nanfied that is remarkably similar to the function we
wrote:

76 Chapter 8. Strings

>>> word = ' banana'
>>> index = word.find(
>>> print(index)

1

a')

In this example, we invokéind onword and pass the letter we are looking for as a parameter.

Actually, thefind method is more general than our function; it can find subg$tinot just charac-
ters:

>>> word.find(' na')
2

It can take as a second argument the index where it shoutd star

>>> word.find(' na', 3)
4

And as a third argument the index where it should stop:

>>> name = ' bob'
>>> namefind('b', 1, 2)
-1

This search fails becausedoes not appear in the index range frono 2 (not including?2).

Exercise 8.7 There is a string method calledunt that is similar to the function in the previous
exercise. Read the documentation of this method and writevacation that counts the number of
asin' banana' .

8.9 Thein operator

The wordin is a boolean operator that takes two strings and reftnugs if the first appears as a
substring in the second:

>>> 'a' in ' banana’
True

>>> 'seed' in ' banana'
False

For example, the following function prints all the lettersrhwordl that also appear iword?2 :

def in_both(wordl, word2):
for letter in word1:

if letter in word2:
print(letter)

With well-chosen variable names, Python sometimes rekd<lnglish. You could read this loop,
“for (each) letter in (the first) word, if (the) letter (appegin (the second) word, print (the) letter.”

Here’s what you get if you compare apples and oranges:

>>> in_both(' apples ', ' oranges ')
a
e
S

8.10. String comparison 77

8.10 String comparison

The relational operators work on strings. To see if two giare equal:

if word == ' banana':
print(" All right, bananas. ")

Other relational operations are useful for putting wordalphabetical order:

if word < ' banana':

print(' Your word, ' + word + ', comes before banana. ')
elif word > ' banana' :

printt ' Your word, ' + word + ', comes after banana. ')
else:

print(" All right, bananas. ")

Python does not handle uppercase and lowercase lettestigevgay that people do. All the upper-
case letters come before all the lowercase letters, so:

Your word, Pineapple, comes before banana.

A common way to address this problem is to convert stringsstaadard format, such as all low-
ercase, before performing the comparison. Keep that in iniredise you have to defend yourself
against a man armed with a Pineapple.

8.11 Debugging

When you use indices to traverse the values in a sequensdriitky to get the beginning and end
of the traversal right. Here is a function that is supposetbtopare two words and retuiiimue if
one of the words is the reverse of the other, but it contailesesors:

def is_reverse(wordl, word2):
if len(wordl) !'= len(word2):
return False

0
len(word2)

i
j

while j > 0:
if word1[i] != word2][j]:
return False
i =i+l
j=01

return True

The firstif statement checks whether the words are the same lengtht, Mvaaan returrralse
immediately and then, for the rest of the function, we canagsthat the words are the same length.
This is an example of the guardian pattern in Section 6.8.

i andj are indices:i traversesvordl forward whilej traversesvord2 backward. If we find two
letters that don’t match, we can retufalse immediately. If we get through the whole loop and all
the letters match, we retuifmue .

78 Chapter 8. Strings

If we test this function with the words “pots” and “stop”, wgpect the return valugrue , but we
get an IndexError:

>>> is reverse('pots ', 'stop ')

File "reverse.py", line 15, in is_reverse
if wordl[i] != word2][j]:
IndexError: string index out of range

For debugging this kind of error, my first move is to print tredues of the indices immediately
before the line where the error appears.

while j > 0:
print(i, j) # print here

if word1[i] != word2][j]:
return False

i+1

-1

i
j

Now when | run the program again, | get more information:

>>> is reverse('pots ', 'stop ')
04

IndexError: string index out of range

The first time through the loop, the valuejofs 4, which is out of range for the strifgots ' . The
index of the last character is 3, so the initial valuejfahould bden(word2)-1

If | fix that error and run the program again, | get:

>>> is reverse('pots ', 'stop ')
03
12
21
True

This time we get the right answer, but it looks like the loopyaan three times, which is suspicious.
To get a better idea of what is happening, it is useful to drastate diagram. During the first
iteration, the frame fois_reverse looks like this:

wordl —= ’pots’ word2 —= 'stop’

i—=0 i— 3

| took a little license by arranging the variables in the fesamd adding dotted lines to show that the
values ofi andj indicate characters wordl andword? .

Exercise 8.8 Starting with this diagram, execute the program on papemgimg the values df
andj during each iteration. Find and fix the second error in thiefion.

8.12. Glossary 79

8.12 Glossary

object: Something a variable can refer to. For now, you can use “6béea “value” interchange-
ably.

sequence:An ordered set; that is, a set of values where each valuengiiée by an integer index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, sucbhasacter in a string.
slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by wadaiion marks.
immutable: The property of a sequence whose items cannot be assigned.

traverse: To iterate through the items in a sequence, performing daimperation on each.
search: A pattern of traversal that stops when it finds what it is logkior.

counter: A variable used to count something, usually initialized @oazand then incremented.
method: A function that is associated with an object and called udioignotation.

invocation: A statement that calls a method.

8.13 Exercises

Exercise 8.9 A string slice can take a third index that specifies the “sieg;sthat is, the number of
spaces between successive characters. A step size of 2 eveam®ther character; 3 means every
third, etc.

>>> fruit = ' banana'
>>> fruit[0:5:2]
" bnn

A step size of -1 goes through the word backwards, so the[sije generates a reversed string.
Use this idiom to write a one-line versioniefpalindrome from Exercise 6.6.

Exercise 8.10Read the documentation of the string methods dats.python.org/lib/
string-methods.html . You might want to experiment with some of them to make sune yo-
derstand how they worlstrip andreplace are particularly useful.

The documentation uses a syntax that might be confusing. Example, in
find(subl, start], end]]) , the brackets indicate optional arguments.s8 is required, but
start is optional, and if you includstart , thenend is optional.

Exercise 8.11The following functions are alhtended to check whether a string contains any low-
ercase letters, but at least some of them are wrong. For eackidn, describe what the function
actually does (assuming that the parameter is a string).

80 Chapter 8. Strings

def any_lowercasel(s):
for cin s
if c.islower():
return True
else:
return False

def any_lowercase2(s):
for ¢ in s:
if " c' .islower():
return ' True'
else:
return ' False '

def any_lowercase3(s):
for c in s:
flag = c.islower()
return flag

def any_lowercase4(s):
flag = False
for c in s:
flag = flag or c.islower()
return flag

def any_lowercase5(s):
for ¢ in s:
if not c.islower():
return False
return True

Exercise 8.12R0OT13 is a weak form of encryption that involves “rotatingith letter in a word by
13 place$. To rotate a letter means to shift it through the alphabeipging around to the beginning
if necessary, so 'A shifted by 3 is 'D’ and 'Z’ shifted by 1 &\

Write a function calledotate_ word that takes a string and an integer as parameters, and that
returns a new string that contains the letters from the waiggtring “rotated” by the given amount.

For example, “cheer” rotated by 7 is “jolly” and “melon” ra¢al by -10 is “cubed”.

You might want to use the built-in functionsd , which converts a character to a numeric code, and
chr , which converts numeric codes to characters.

Potentially offensive jokes on the Internet are sometinmeoded in ROT13. If you are not easily
offended, find and decode some of them.

1seewikipedia.org/wiki/ROT13

Chapter 9

Case study: word play

9.1 Reading word lists

For the exercises in this chapter we need a list of EnglishdaworThere are lots of word lists
available on the Web, but the one most suitable for our p@rmosne of the word lists collected and
contributed to the public domain by Grady Ward as part of trabilexicon project It is a list of
113,809 official crosswords; that is, words that are comsidigalid in crossword puzzles and other
word games. In the Moby collection, the filename 18809of.fic ; | include a copy of this file,
with the simpler nameords.txt , along with Swampy.

This file is in plain text, so you can open it with a text editouf you can also read it from Python.
The built-in functionopen takes the name of the file as a parameter and retuilesabject you can
use to read the file.

>>> fin = open(' words.txt ')
>>> print(fin)
<_i0.TextiOWrapper name= ' words.txt

mode='r' encoding= ' cpl252"' >

fin is a common name for a file object used for input. Mbdé indicates that this file is open for
reading (as opposed tav for writing).

The file object provides several methods for reading, inalgickadline , which reads characters
from the file until it gets to a newline and returns the resslaatring:

>>> fin.readline()
"aa\n '

The first word in this particular list is “aa,” which is a kind lava. The charactén is a newline
that separate this word from the next.

The file object keeps track of where it is in the file, so if yoll egadline again, you get the next
word:

>>> fin.readline()
" aah\n '

Lwikipedia.org/wiki/Moby_Project

82 Chapter 9. Case study: word play

The next word is “aah,” which is a perfectly legitimate wosd, stop looking at me like that. Or, if
it's the whitespace that’s bothering you, we can get rid @fith the string methodtrip

>>> line = fin.readline()
>>> word = line.strip()
>>> print(word)

aahed

You can also use a file object as part dbra loop. This program readgords.txt and prints each
word, one per line:

fin = open(' words.txt ')
for line in fin:
word = line.strip()
print(word)

Exercise 9.1 Write a program that readgords.txt and prints only the words with more than 20
characters (not counting whitespace).

9.2 Exercises

There are solutions to these exercises in the next sectmnshould at least attempt each one before
you read the solutions.

Exercise 9.21n 1939 Ernest Vincent Wright published a 50,000 word noaélec Gadsby that does
not contain the letter “e.” Since “e” is the most common letteEnglish, that’s not easy to do.

In fact, it is difficult to construct a solitary thought witbhbusing that most common symbol. It is
slow going at first, but with caution and hours of training yean gradually gain facility.

All right, I'll stop now.

Write a function calledhas_no_e that returnsTrue if the given word doesn’t have the letter “e” in
it.

Modify your program from the previous section to print ortigtwords that have no “e” and compute
the percentage of the words in the list have no “e.”

Exercise 9.3 Write a function namedvoids that takes a word and a string of forbidden letters, and
that returngrue if the word doesn’t use any of the forbidden letters.

Modify your program to prompt the user to enter a string obfdden letters and then print the
number of words that don’t contain any of them. Can you findralmoation of 5 forbidden letters
that excludes the smallest number of words?

Exercise 9.4 Write a function namedses_only that takes a word and a string of letters, and that
returnsTrue if the word contains only letters in the list. Can you make atsece using only the
lettersacefhlo ? Other than “Hoe alfalfa?”

Exercise 9.5 Write a function namedses_all that takes a word and a string of required letters,
and that return3rue if the word uses all the required letters at least once. Howymeords are
there that use all the vowedsiou ? How abouteiouy ?

9.3. Search 83

Exercise 9.6 Write a function calleds_abecedarian that returnsTrue if the letters in a word
appear in alphabetical order (double letters are ok). Howynadecedarian words are there?

9.3 Search

All of the exercises in the previous section have somethirgpimmon; they can be solved with the
search pattern we saw in Section 8.6. The simplest example is

def has_no_e(word):
for letter in word:
if letter ==
return False
return True

e

Thefor loop traverses the charactersiord . If we find the letter “e”, we can immediately return
False ; otherwise we have to go to the next letter. If we exit the laopmally, that means we didn't
find an “e”, so we returiirue .

avoids is a more general version bés _no_e but it has the same structure:

def avoids(word, forbidden):
for letter in word:
if letter in forbidden:
return False
return True

We can returrralse as soon as we find a forbidden letter; if we get to the end ofdbp,lwe return
True .

uses_only is similar except that the sense of the condition is reversed

def uses_only(word, available):
for letter in word:
if letter not in available:
return False
return True

Instead of a list of forbidden letters, we have a list of aafalig letters. If we find a letter mord that
is not inavailable , we can returrralse .

uses_all is similar except that we reverse the role of the word and tifiregsof letters:

def uses_all(word, required):
for letter in required:
if letter not in word:
return False
return True

Instead of traversing the lettersvird , the loop traverses the required letters. If any of the megli
letters do not appear in the word, we can reteaise .

If you were really thinking like a computer scientist, youwldhave recognized thases_all was
an instance of a previously-solved problem, and you wowle haitten:

84 Chapter 9. Case study: word play

def uses_all(word, required):
return uses_only(required, word)

This is an example of a program development method cgltellem recognition, which means
that you recognize the problem you are working on as an instaha previously-solved problem,
and apply a previously-developed solution.

9.4 Looping with indices

| wrote the functions in the previous section with loops because | only needed the characters in
the strings; | didn’t have to do anything with the indices.

Foris_abecedarian ~ we have to compare adjacent letters, which is a little trizih afor loop:

def is_abecedarian(word):
previous = word[0]
for ¢ in word:
if ¢ < previous;
return False
previous = ¢
return True

An alternative is to use recursion:

def is_abecedarian(word):
if len(word) <= 1
return True
if word[0] > word[1]:
return False
return is_abecedarian(word[1:])

Another option is to use while loop:

def is_abecedarian(word):
i=0
while i < len(word)-1:
if word[i+1] < word]i]:
return False
i =i+l
return True

The loop starts @0 and ends wheixlen(word)-1 . Each time through the loop, it compares the
ith character (which you can think of as the current charptbethei + 1th character (which you
can think of as the next).

If the next character is less than (alphabetically befdre)aurrent one, then we have discovered a
break in the abecedarian trend, and we refaise .

If we get to the end of the loop without finding a fault, then thard passes the test. To convince
yourself that the loop ends correctly, consider an exanilde lflossy ' . The length of the word

is 6, so the last time the loop runs is wheris 4, which is the index of the second-to-last character.
On the last iteration, it compares the second-to-last dtarto the last, which is what we want.

9.5. Debugging 85

Here is a version ofs_palindrome (see Exercise 6.6) that uses two indices; one starts at the
beginning and goes up; the other starts at the end and goes dow

def is_palindrome(word):

i=0
j = len(word)-1
while i<j;
if word[i] = word][j]:
return False
i = i+l
j=01

return True
Or, if you noticed that this is an instance of a previousli#sd problem, you might have written:

def is_palindrome(word):
return is_reverse(word, word)

Assuming you did Exercise 8.8.

9.5 Debugging

Testing programs is hard. The functions in this chapter eliagively easy to test because you can
check the results by hand. Even so, it is somewhere betw#eutiiand impossible to choose a set
of words that test for all possible errors.

Takinghas_no_e as an example, there are two obvious cases to check: wotdsatrean 'e’ should
returnFalse ; words that don’t should returfrue . You should have no trouble coming up with one
of each.

Within each case, there are some less obvious subcases. gitthmvords that have an “e,” you
should test words with an “e” at the beginning, the end, amdesehere in the middle. You should
test long words, short words, and very short words, like tin@tg string. The empty string is an
example of aspecial casewhich is one of the non-obvious cases where errors oftén lur

In addition to the test cases you generate, you can also destprogram with a word list like
words.txt . By scanning the output, you might be able to catch errorsbbicareful: you might
catch one kind of error (words that should not be included,doe) and not another (words that
should be included, but aren't).

In general, testing can help you find bugs, but it is not eagjetterate a good set of test cases, and
even if you do, you can’t be sure your program is correct.

According to a legendary computer scientist:

Program testing can be used to show the presence of bugsebert to show their
absence!

— Edsger W. Dijkstra

86 Chapter 9. Case study: word play

9.6 Glossary
file object: A value that represents an open file.

problem recognition: A way of solving a problem by expressing it as an instance okaipusly-
solved problem.

special case:A test case that is atypical or non-obvious (and less likelya handled correctly).

9.7 Exercises
Exercise 9.7 This question is based on a Puzzler that was broadcast oadfeprogranCar Talk?:

Give me a word with three consecutive double letters. l¥egyou a couple of words
that almost qualify, but don’t. For example, the word contegt c-o-m-m-i-t-t-e-e. It
would be great except for the ‘i’ that sneaks in there. Or M&ppi: M-i-s-S-i-S-s-i-
p-p-i. If you could take out those i's it would work. But theeea word that has three
consecutive pairs of letters and to the best of my knowledigenay be the only word.
Of course there are probably 500 more but | can only think ef &dhat is the word?

Write a program to find it. You can see my solutiorrértkpython.com/code/cartalk.py
Exercise 9.8 Here’s anothe€ar Talk Puzzle?:

“I was driving on the highway the other day and | happened ticaany odometer.
Like most odometers, it shows six digits, in whole miles oy, if my car had 300,000
miles, for example, I'd see 3-0-0-0-0-0.

“Now, what | saw that day was very interesting. | noticed ttint last 4 digits were

palindromic; that is, they read the same forward as backwemd example, 5-4-4-5 is
a palindrome, so my odometer could have read 3-1-5-4-4-5.

“One mile later, the last 5 numbers were palindromic. Fongxie, it could have read
3-6-5-4-5-6. One mile after that, the middle 4 out of 6 nurstveere palindromic. And
you ready for this? One mile later, all 6 were palindromic!

“The question is, what was on the odometer when | first looked?

Write a Python program that tests all the six-digit number$arints any numbers that satisfy these
requirements. You can see my solutionhitkpython.com/code/cartalk.py

Exercise 9.9 Here’s anothe€ar Talk Puzzler you can solve with a seafch

“Recently | had a visit with my mom and we realized that the tvgits that make
up my age when reversed resulted in her age. For exampleg® g8, I'm 37. We

wondered how often this has happened over the years but veédgdtacked with other
topics and we never came up with an answer.

“When | got home | figured out that the digits of our ages havenbeversible six times
so far. | also figured out that if we're lucky it would happeraagin a few years, and
if we're really lucky it would happen one more time after thiatother words, it would
have happened 8 times over all. So the question is, how oldraow?”

2www.cartalk.com/content/puzzler/transcripts/200725
Swww.cartalk.com/content/puzzler/transcripts/200803
4www.cartalk.com/content/puzzler/transcripts/200813

9.7. Exercises 87

Write a Python program that searches for solutions to thizleu Hint: you might find the string
methodzfill useful.

You can see my solution #tinkpython.com/code/cartalk.py

88

Chapter 9. Case study: word play

Chapter 10

Lists

10.1 Alistis a sequence

Like a string, dist is a sequence of values. In a string, the values are chasaitex list, they can
be any type. The values in a list are callddmentsor sometimegems.

There are several ways to create a new list; the simpleskisdlose the elements in square brackets
([and]):

[10, 20, 30, 40]

[* crunchy frog , 'ram bladder ', ' lark vomit ']

The first example is a list of four integers. The second isteofishree strings. The elements of a
list don’t have to be the same type. The following list consaa string, a float, an integer, and (lo!)
another list:

['spam', 2.0, 5, [10, 20]]

A list within another list isnested

A list that contains no elements is called an empty list; yan create one with empty brackdts,
As you might expect, you can assign list values to variables:

>>> cheeses = [' Cheddar', 'Edam , ' Gouda']
>>> numbers = [17, 123]

>>> empty = []

>>> print(cheeses, numbers, empty)

[' Cheddar', 'Edam , ' Gouda'] [17, 123] []

10.2 Lists are mutable

The syntax for accessing the elements of a list is the sameraactessing the characters of a
string—the bracket operator. The expression inside thekiata specifies the index. Remember that
the indices start at O:

20 Chapter 10. Lists

>>> print(cheeses[0])
Cheddar

Unlike strings, lists are mutable. When the bracket opeggipears on the left side of an assignment,
it identifies the element of the list that will be assigned.

>>> numbers = [17, 123]
>>> numbers[l] = 5

>>> print(numbers)

[17, 5]

The one-eth element ofimbers , which used to be 123, is now 5.

You can think of a list as a relationship between indices damhents. This relationship is called
amapping; each index “maps to” one of the elements. Here is a statgatiaghowingcheeses |,
numbers andempty :

list

cheeses —= 0 —= 'Cheddar’
1 —= 'Edam’
2 —= 'Gouda’

list

numbers — 0—— 17

list

empty —=

Lists are represented by boxes with the word “list” outside ¢he elements of the list inside.
cheeses refers to a list with three elements indexed 0, 1 anaughbers contains two elements; the
diagram shows that the value of the second element has kessigeed from 123 to ®mpty refers
to a list with no elements.

List indices work the same way as string indices:
« Any integer expression can be used as an index.
* If you try to read or write an element that does not exist, getianindexError

« If an index has a negative value, it counts backward frometitbof the list.

Thein operator also works on lists.

>>> cheeses = [' Cheddar', 'Edam , ' Gouda']
>>> ' Edam in cheeses
True

>>> ' Brie ' in cheeses
False

10.3. Traversing a list 91

10.3 Traversing a list

The most common way to traverse the elements of a list is with doop. The syntax is the same
as for strings:

for cheese in cheeses:
print(cheese)

This works well if you only need to read the elements of thie Bat if you want to write or update
the elements, you need the indices. A common way to do thatésimbine the functionsnge
andlen :

for i in range(len(numbers)):
numbers[i] = numbers[i] * 2

This loop traverses the list and updates each elensantreturns the number of elements in the list.
range returns a list of indices from 0 to— 1, wheren is the length of the list. Each time through
the loopi gets the index of the next element. The assignment statam#re body uses to read
the old value of the element and to assign the new value.

A for loop over an empty list never executes the body:

for x in [J:
print(' This never happens. ')

Although a list can contain another list, the nested lidt@bunts as a single element. The length of
this list is four:

['spam', 1, ['Brie ', 'Roquefort ', 'Pol le Veq '], [1, 2, 3]]

10.4 List operations

The+ operator concatenates lists:

>>> a = [1, 2, 3
>>> b = [4, 5, 6]
>>c=a+b
>>> print(c)

[1, 2, 3, 4,5, 6]

Similarly, the* operator repeats a list a given number of times:

>>> [0] * 4

[0, 0, 0, 0]

>>> (1, 2, 3] * 3

1,2 31,2 31, 2 3

The first example repeaf8] four times. The second example repeats the[lis?, 3] three
times.

92 Chapter 10. Lists

10.5 Listslices

The slice operator also works on lists:

>>t=["a, 'b, "¢, "d, e, "]
>>> [1:3]

['b, "e']

>>> 4]

[*a", "b", "¢, "d']

>>> {[3]

[td, e, "f']

If you omit the first index, the slice starts at the beginniliggjou omit the second, the slice goes to
the end. So if you omit both, the slice is a copy of the whole lis

>>> {[]

['a", "b", "c', "d, "e, "f']

Since lists are mutable, it is often useful to make a copy fleeferforming operations that fold,
spindle or mutilate lists.

A slice operator on the left side of an assignment can updatiépie elements:

>>t=["'a, 'b, 'c, "d, e, "]
>> {13 = ["x', "y

>>> print(t)

[Ta', "x', 'y, td, e, "]

10.6 List methods

Python provides methods that operate on lists. For exaragend adds a new element to the end
of a list:

>>t=["'a, 'b, 'c']
>>> tappend('d')

>>> print(t)

["a', "b", 'c', "d]

extend takes a list as an argument and appends all of the elements:

>>tl=["a, 'b, 'c']

>>> 22 =["'d, 'e']

>>> tl.extend(t2)

>>> print(tl)

["a', "b', "¢, td, te]

This example leavel?2 unmodified.

sort arranges the elements of the list from low to high:
>>t=["'d, 'c, "e, '"b, "a]

>>> t.s0rt()

>>> print(t)
["a', "b', "¢, "d, "e']

10.7. Map, filter and reduce 93

List methods are all void; they modify the list and retitone. If you accidentally writet =
tsort() , you will be disappointed with the result.

10.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

def add_all(t):
total = 0
for x in t:
total += x
return total

total is initialized to 0. Each time through the loop,gets one element from the list. The
operator provides a short way to update a variable. abggmented assignment statement

total += X
is equivalent to:
total = total + x

As the loop executedptal accumulates the sum of the elements; a variable used thisisvay
sometimes called amccumulator.

Adding up the elements of a list is such a common operationRighon provides it as a built-in
function,sum:

>>>t = [1, 2, 3]
>>> sum(t)
6

An operation like this that combines a sequence of elemattdsaisingle value is sometimes called
reduce

Sometimes you want to traverse one list while building aentRor example, the following function
takes a list of strings and returns a new list that contaipgai&zed strings:

def capitalize_all(t):
res =]
for s in t
res.append(s.capitalize())
return res

res is initialized with an empty list; each time through the lpoge append the next element. So
res is another kind of accumulator.

An operation likecapitalize_all is sometimes calledmap because it “maps” a function (in this
case the methochpitalize) onto each of the elements in a sequence.

Another common operation is to select some of the elemeunts & list and return a sublist. For ex-
ample, the following function takes a list of strings andiras a list that contains only the uppercase
strings:

94 Chapter 10. Lists

def only_upper(t):
res =]
for s in t
if s.isupper():
res.append(s)
return res

isupper is a string method that returfisue if the string contains only upper case letters.

An operation likeonly upper is called dfilter because it selects some of the elements and filters
out the others.

Most common list operations can be expressed as a combiradtinap, filter and reduce. Because
these operations are so common, Python provides languagede to support them, including the
built-in functionmap and an operator called a “list comprehension.”

Exercise 10.1Write a function that takes a list of numbers and returns tiraudative sum; that
is, a new list where théh element is the sum of the first- 1 elements from the original list. For
example, the cumulative sum@f 2, 3] is[1, 3, 6]

10.8 Deleting elements

There are several ways to delete elements from a list. If ymwkthe index of the element you
want, you can uspop:

>>t=["a, 'b, 'c']
>>> x = tpop(1)
>>> print(t)

['a, "c']
>>> print(x)
b

pop modifies the list and returns the element that was removegoufdon’t provide an index, it
deletes and returns the last element.

If you don’t need the removed value, you can useddieoperator:
>>t=["'a, 'b, 'c']
>>> del {[1]

>>> print(t)

[I a.I , 1 cl]

If you know the element you want to remove (but not the indga) can useemove :
>>>t:[lal,lbl,ICI]

>>> tremove('b')

>>> print(t)
[ra, "¢

The return value fronremove is None.

To remove more than one element, you candgsewith a slice index:

10.9. Lists and strings 95

>>t=["'a, '"b, "¢, "d, e, "]
>>> del t[1:5]

>>> print(t)

[ra, ']

As usual, the slice selects all the elements up to, but nbtdimgy, the second index.

10.9 Lists and strings

A string is a sequence of characters and a list is a sequenedugfs, but a list of characters is not
the same as a string. To convert from a string to a list of atiars, you can usist

>>> g = ' spam'

>>> t = list(s)

>>> print(t)

['s", "p'", "a, 'M]

Becausdist is the name of a built-in function, you should avoid usingsittavariable name. | also
avoidl because it looks too much like So that's why | usé.

Thelist function breaks a string into individual letters. If you waa break a string into words,
you can use theplit method:

>>> s = ' pining for the fjords
>>> t = s.split()

>>> print(t)

['pining ", "for "', "the', 'fiords ']

An optional argument calledd@elimiter specifies which characters to use as word boundaries. The
following example uses a hyphen as a delimiter:

>>> s = ' spam-spam-spam '
>>> delimiter = b

>>> s.split(delimiter)

['spam', ' spam', ' spam']

join is the inverse ofplit . It takes a list of strings and concatenates the elempints. is a string
method, so you have to invoke it on the delimiter and passshad a parameter:

>>>t =1 'pining ', ‘for ', "the', 'fiords ']
>>> delimiter = n
>>> delimiter.join(t)

' pining for the fjords

In this case the delimiter is a space charactejpiso puts a space between words. To concatenate
strings without spaces, you can use the empty stfingas a delimiter.

10.10 Objects and values

If we execute these assignment statements:

96 Chapter 10. Lists

' banana'
' banana'

a
b

We know that andb both refer to a string, but we don’t know whether they refethisame string.
There are two possible states:

a —= 'banana’ a~

'banana’
b —= ’banana’ b —

In one casea andb refer to two different objects that have the same value. érsttond case, they
refer to the same object.

To check whether two variables refer to the same object, powse thés operator.

>>> g = ' banana'
>>> b = ' banana'
>>>ais b

True

In this example, Python only created one string object, anildandb refer to it.
But when you create two lists, you get two objects:

>>> a =[1, 2, 3]
>>> p =1, 2, 3]
>>> ais b

False

So the state diagram looks like this:

a—=[1,2, 3]
b—1[1,23]

In this case we would say that the two lists arivalent, because they have the same elements,
but notidentical, because they are not the same object. If two objects ar¢igdgrthey are also
equivalent, but if they are equivalent, they are not necégsdentical.

Until now, we have been using “object” and “value” interchaably, but it is more precise to say
that an object has a value. If you exec[itg,3] , you get a list object whose value is a sequence
of integers. If another list has the same elements, we sagittte same value, but it is not the same
object.

10.11 Aliasing

If a refers to an object and you assigr= a, then both variables refer to the same object:

>>>a = [1, 2, 3
>>h = a

>>> b is a

True

10.12. List arguments 97

The state diagram looks like this:

a\

> [123]

The association of a variable with an object is callegf@rence In this example, there are two
references to the same object.

An object with more than one reference has more than one reaomee say that the objectadiased
If the aliased object is mutable, changes made with one afiast the other:

>>> p[0] = 17
>>> print(a)
[17, 2, 3]

Although this behavior can be useful, it is error-prone. émeral, it is safer to avoid aliasing when
you are working with mutable objects.

For immutable objects like strings, aliasing is not as muc problem. In this example:

' banana'
' banana'

a
b

It almost never makes a difference whethemdb refer to the same string or not.

10.12 List arguments

When you pass a list to a function, the function gets a refarémthe list. If the function modifies
a list parameter, the caller sees the change. For exadgidés head removes the first element
from a list:

def delete_head(t):
del t[0]

Here's how it is used:

>>> letters = ['a', 'b'", 'c']
>>> delete_head(letters)

>>> print(letters)

['b, e

The parameter and the variabléetters are aliases for the same object. The stack diagram looks
like this:

: list
__main__ letters —|

™| 0—a
7 1—= b

2—=70

lelete_head t

98 Chapter 10. Lists

Since the list is shared by two frames, | drew it between them.

It is important to distinguish between operations that rfyolilsts and operations that create new
lists. For example, theppend method modifies a list, but theoperator creates a new list:

>>> tl = [1, 2]

>>> t2 = tl.append(3)
>>> print(tl)

[1, 2, 3]

>>> print(t2)

None

>>> 3 = t1 + [3]
>>> print(t3)

[1, 2, 3]

>>> 12 is t3
False

This difference is important when you write functions tha supposed to modify lists. For example,
this functiondoes not delete the head of a list:

def bad_delete_head(t):
t = 1] # WRONG!

The slice operator creates a new list and the assignmentshaikéer to it, but none of that has any
effect on the list that was passed as an argument.

An alternative is to write a function that creates and reslamew list. For examplégil returns
all but the first element of a list:

def tail(t):
return {[1:]

This function leaves the original list unmodified. Here’sshibis used:

>>> letters = ['a', 'b',
>>> rest = tail(letters)

>>> print(rest)

['b, e

c']

Exercise 10.2Write a function callecthop that takes a list and modifies it, removing the first and
last elements, and returiene.

Then write a function calledhiddle that takes a list and returns a new list that contains all it t
first and last elements.

10.13 Debugging

Careless use of lists (and other mutable objects) can Idadddours of debugging. Here are some
common pitfalls and ways to avoid them:

1. Don't forget that most list methods modify the argumertt eeturnNone. This is the opposite
of the string methods, which return a new string and leavetlggnal alone.

If you are used to writing string code like this:

10.14. Glossary 99

word = word.strip()
It is tempting to write list code like this:
t = tsort() # WRONG!

Becauseort returnsNone, the next operation you perform withis likely to fail.

Before using list methods and operators, you should readitbementation carefully and then
test them in interactive mode. The methods and operatadridtsashare with other sequences
(like strings) are documented ddcs.python.org/lib/typesseq.html . The methods and
operators that only apply to mutable sequences are docerhattdocs.python.org/lib/
typesseg-mutable.html

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many waydd things. For example, to
remove an element from a list, you can psp, remove , del , or even a slice assignment.

To add an element, you can use #ppend method or thet operator. Assuming thatis a
list andx is a list element, these are right:

t.append(x)
t=1+[X

And these are wrong:

t.append([x]) # WRONG!
t = tappend(x) # WRONG!
t+ [x # WRONG!
t=1t+x # WRONG!

Try out each of these examples in interactive mode to male ywou understand what they
do. Notice that only the last one causes a runtime error; tiher three are legal, but they do
the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method likeort that modifies the argument, but you need to keep the
original list as well, you can make a copy.

orig = t[]
t.sort()

In this example you could also use the built-in functsorted , which returns a new, sorted
list and leaves the original alone. But in that case you shaubid usingsorted as a variable
name!

10.14 Glossary
list: A sequence of values.
element: One of the values in a list (or other sequence), also cakeust

index: An integer value that indicates an element in a list.

100 Chapter 10. Lists

nested list: A list that is an element of another list.
list traversal: The sequential accessing of each element in a list.

mapping: A relationship in which each element of one set correspoodstelement of another
set. For example, a list is a mapping from indices to elements

accumulator: A variable used in a loop to add up or accumulate a result.

augmented assignment:A statement that updates the value of a variable using aratipdike +=.

reduce: A processing pattern that traverses a sequence and acdaslila elements into a single
result.

map: A processing pattern that traverses a sequence and perdoroperation on each element.
filter: A processing pattern that traverses a list and selects ¢insegits that satisfy some criterion.
object: Something a variable can refer to. An object has a type antuava

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two or more variables refer to the saijexb

delimiter: A character or string used to indicate where a string shoalsiit.

10.15 Exercises

Exercise 10.3Write a function calleds_sorted that takes a list as a parameter and retdins
if the list is sorted in ascending order afalse otherwise. You can assume (as a precondition) that
the elements of the list can be compared with the relatiopatators:, >, etc.

For examplejs_sorted([1,2,2]) should returrifrue andis_sorted('b',"a']) should re-
turn False .

Exercise 10.4Two words are anagrams if you can rearrange the letters fr@ammspell the other.
Write a function calleds_anagram that takes two strings and returfisie if they are anagrams.

Exercise 10.5The (so-called) Birthday Paradox:

1. Write a function calledhas_duplicates that takes a list and returrisue if there is any
element that appears more than once. It should not modifgriganal list.

2. If there are 23 students in your class, what are the chahae$wo of you have the same
birthday? You can estimate this probability by generatarglom samples of 23 birthdays and
checking for matches. Hint: you can generate random biythdéth therandint function in
therandom module.

You can read about this problemwikipedia.org/wiki/Birthday paradox , and you can see
my solution athinkpython.com/code/birthday.py

10.15. Exercises 101

Exercise 10.6Write a function calledemove_duplicates that takes a list and returns a new list
with only the unique elements from the original. Hint: theynd have to be in the same order.

Exercise 10.7Write a function that reads the fiteords.txt and builds a list with one element per
word. Write two versions of this function, one using tiwend method and the other using the
idiomt =t + [x] . Which one takes longer to run? Why?

You can see my solution #tinkpython.com/code/wordlist.py

Exercise 10.8To check whether a word is in the word list, you could useitheperator, but it
would be slow because it searches through the words in order.

Because the words are in alphabetical order, we can speggsthp with a bisection search (also
known as binary search), which is similar to what you do whem lpok a word up in the dictionary.
You start in the middle and check to see whether the word yeuamking for comes before the
word in the middle of the list. If so, then you search the figf bf the list the same way. Otherwise
you search the second half.

Either way, you cut the remaining search space in half. Ifwtbed list has 113,809 words, it will
take about 17 steps to find the word or conclude that it’s rerieth

Write a function calledbisect that takes a sorted list and a target value and returns tles mfidthe
value in the list, if it's there, oNone if it's not.

Or you could read the documentation of thigect module and use that!

Exercise 10.9Two words are a “reverse pair” if each is the reverse of themti/rite a program
that finds all the reverse pairs in the word list.

Exercise 10.10Two words “interlock” if taking alternating letters from efaforms a new wort
For example, “shoe” and “cold” interlock to form “schooléd.

1. Write a program that finds all pairs of words that interlodint: don’t enumerate all pairs!

2. Canyou find any words that are three-way interlocked;ith&very third letter forms a word,
starting from the first, second or third?

1This exercise is inspired by an exampleatzlers.org

102 Chapter 10. Lists

Chapter 11

Dictionaries

A dictionary is like a list, but more general. In a list, the indices havbéantegers; in a dictionary
they can be (almost) any type.

You can think of a dictionary as a mapping between a set otewd{which are calleleys) and a
set of values. Each key maps to a value. The association of arlcea value is called key-value
pair or sometimes aitem.

As an example, we’'ll build a dictionary that maps from Enlglie Spanish words, so the keys and
the values are all strings.

The functiondict creates a new dictionary with no items. Becadise is the name of a built-in
function, you should avoid using it as a variable name.

>>> eng2sp = dict()
>>> print(eng2sp)
{

The squiggly-brackets} , represent an empty dictionary. To add items to the dictigneu can
use square brackets:

>>> eng2sp[' one'] = ' uno'
This line creates an item that maps from the keg’ to the valué uno' . If we print the dictionary
again, we see a key-value pair with a colon between the keyaine:

>>> print(eng2sp)
{*one': "uno'}

This output format is also an input format. For example, yan create a new dictionary with three
items:

>>> eng2sp = { 'one': 'uno', "two': 'dos', 'three ': 'tres '}

But if you printeng2sp , you might be surprised:

>>> print(eng2sp)
{*one': "uno', ' three

"tres ', '"two': 'dos'}

104 Chapter 11. Dictionaries

The order of the key-value pairs is not the same. In fact, if type the same example on your com-
puter, you might get a different result. In general, the oaodétems in a dictionary is unpredictable.

But that's not a problem because the elements of a dicticar@mpever indexed with integer indices.
Instead, you use the keys to look up the corresponding values

>>> print(eng2sp] ' two'])
' dos’

The key'two' always maps to the valdalos' so the order of the items doesn’t matter.
If the key isn’t in the dictionary, you get an exception:

>>> print(eng2sp[* four ')
KeyError: ' four '

Thelen function works on dictionaries; it returns the number of keyue pairs:

>>> |en(eng2sp)
3

Thein operator works on dictionaries; it tells you whether sormgflappears askey in the dictio-
nary (appearing as a value is not good enough).

>>> ' one' in eng2sp
True
>>> ' uno
False

in eng2sp

To see whether something appears as a value in a dictiomargan use the methadlues , which
returns the values as a list, and then usértheperator:

>>> vals = eng2sp.values()
>>> 'uno' in vals
True

The in operator uses different algorithms for lists and dictigesr For lists, it uses a search
algorithm, as in Section 8.6. As the list gets longer, thedeéime gets longer in direct pro-
portion. For dictionaries, Python uses an algorithm caliedashtable that has a remarkable
property: thein operator takes about the same amount of time no matter how iteans there
are in a dictionary. | won't explain how that's possible, lygu can read more about it at
wikipedia.org/wiki/Hash_table

Exercise 11.1Write a function that reads the wordswords.txt ~ and stores them as keys in a
dictionary. It doesn’t matter what the values are. Then yauuse thén operator as a fast way to
check whether a string is in the dictionary.

If you did Exercise 10.8, you can compare the speed of thisgmentation with the listh operator
and the bisection search.

11.1 Dictionary as a set of counters

Suppose you are given a string and you want to count how margsteach letter appears. There
are several ways you could do it:

11.1. Dictionary as a set of counters 105

1. You could create 26 variables, one for each letter of theatlet. Then you could traverse the
string and, for each character, increment the correspgratinnter, probably using a chained
conditional.

2. You could create a list with 26 elements. Then you couldredreach character to a number
(using the built-in functiorord), use the number as an index into the list, and increment the
appropriate counter.

3. You could create a dictionary with characters as keys aundters as the corresponding values.
The first time you see a character, you would add an item to ittteodary. After that you
would increment the value of an existing item.

Each of these options performs the same computation, batcgditem implements that computation
in a different way.

An implementation is a way of performing a computation; some implementatiorsbatter than
others. For example, an advantage of the dictionary imptéatien is that we don’t have to know
ahead of time which letters appear in the string and we onlg @ make room for the letters that
do appear.

Here is what the code might look like:

def histogram(s):
d = dict()
for cin s
if ¢ not in d:
dic] =1
else:
dic] += 1
return d

The name of the function isistogram, which is a statistical term for a set of counters (or frequen
cies).

The first line of the function creates an empty dictionarye T loop traverses the string. Each
time through the loop, if the characters not in the dictionary, we create a new item with kegnd
the initial value 1 (since we have seen this letter once).idfalready in the dictionary we increment
dc] .

Here’s how it works:

>>> h = histogram(' brontosaurus ')
>>> print(h)
{ra':1, 'b':1 '0:2 'n:1 ‘'s':2, ‘'r':2, ‘'u:2 ‘"t':1}

The histogram indicates that the lett&'s and' b' appear oncé;o' appears twice, and so on.

Exercise 11.2Dictionaries have a method callget that takes a key and a default value. If the key
appears in the dictionarget returns the corresponding value; otherwise it returns &faudt value.
For example:

>>> h = histogram(
>>> print(h)
{ra': 1}

a')

106 Chapter 11. Dictionaries

>>> hget('a', 0)
1
>>> hget('b', 0)
0

Useget to write histogram more concisely. You should be able to eliminateithestatement.

11.2 Looping and dictionaries

If you use a dictionary in dor statement, it traverses the keys of the dictionary. For @am
print_hist prints each key and the corresponding value:

def print_hist(h):
for ¢ in h
print(c, h[c])

Here’s what the output looks like:

>>> h = histogram(' parrot ')
>>> print_hist(h)

al

p1l
r2
t1
ol

Again, the keys are in no particular order.

Exercise 11.3Dictionaries have a method callkelys that returns the keys of the dictionary, in no
particular order, as a list.

Modify print_hist to print the keys and their values in alphabetical order.

11.3 Reverse lookup

Given a dictionaryl and a ke, it is easy to find the corresponding values dk] . This operation
is called dookup.

But what if you haver and you want to find? You have two problems: first, there might be more
than one key that maps to the valueDepending on the application, you might be able to pick one,
or you might have to make a list that contains all of them. &dg¢there is no simple syntax to do a
reverse lookup you have to search.

Here is a function that takes a value and returns the firsthaynhaps to that value:

def reverse_lookup(d, v):
for k in d:
if dk] == v:
return k
raise ValueError

11.4. Dictionaries and lists 107

This function is yet another example of the search pattanhjthuses a feature we haven't seen
before,raise . Theraise statement causes an exception; in this case it cau¥akieError
which generally indicates that there is something wron@ wit value of a parameter.

If we get to the end of the loop, that meandoesn’'t appear in the dictionary as a value, so we raise
an exception.

Here is an example of a successful reverse lookup:

>>> h = histogram(' parrot ')
>>> k = reverse_lookup(h, 2)
>>> print(k)

r

And an unsuccessful one:

>>> k = reverse_lookup(h, 3)
Traceback (most recent call last):

File "<stdin>", line 1, in ?

File "<stdin>", line 5, in reverse_lookup
ValueError

The result when you raise an exception is the same as wheorPsdises one: it prints a traceback
and an error message.

Theraise statement takes a detailed error message as an optionatemgu-or example:

>>> raise ValueError, ' value does not appear in the dictionary
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: value does not appear in the dictionary

A reverse lookup is much slower than a forward lookup; if yauénto do it often, or if the dictionary
gets big, the performance of your program will suffer.

Exercise 11.4Modify reverse lookup so that it builds and returns a list aff keys that map te,
or an empty list if there are none.

11.4 Dictionaries and lists

Lists can appear as values in a dictionary. For example,lfwere given a dictionary that maps
from letters to frequencies, you might want to invert it;tti& create a dictionary that maps from
frequencies to letters. Since there might be several $attéh the same frequency, each value in the
inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:

def invert_dict(d):
inv = dict()
for key in d:
val = dlkey]
if val not in inv:
invjvall] = [key]

108 Chapter 11. Dictionaries

else:
inv[val].append(key)
return inv

Each time through the loopegy gets a key fromd andval gets the corresponding value. vl

is not ininv , that means we haven't seen it before, so we create a new itdrmitialize it with a
singleton (a list that contains a single element). Otherwise we haga Has value before, so we
append the corresponding key to the list.

Here is an example:

>>> hist = histogram(' parrot ')

>>> print(hist)

{ra': 1, 'p':1, ‘'r':2 “"t':1, ‘'o:1}
>>> inv = invert_dict(hist)

>>> print(inv)

.1 "a", "p'", "t', "o, 2 'r']}

And here is a diagram showimist andinv :

dict dict list
hist—= a —=1 inv —= 1 0——=a
= 1 1—=p
T —= 2 2—=11
tT—=1 3—="0

0 —=1

list

2 O——=1rr

A dictionary is represented as a box with the tyii® above it and the key-value pairs inside. If
the values are integers, floats or strings, | usually dramtimside the box, but | usually draw lists
outside the box, just to keep the diagram simple.

Lists can be values in a dictionary, as this example showsthiey cannot be keys. Here’'s what
happens if you try:

>>> 1t =[1, 2, 3
>>> d = dict()
>>> d[f] = ' oops’

Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: list objects are unhashable

| mentioned earlier that a dictionary is implemented usim@gshtable and that means that the keys
have to béhashable

A hashis a function that takes a value (of any kind) and returns &egr. Dictionaries use these
integers, called hash values, to store and look up key-yairs.

This system works fine if the keys are immutable. But if theskase mutable, like lists, bad things
happen. For example, when you create a key-value pair, Rythshes the key and stores it in the

11.5. Memos 109

corresponding location. If you modify the key and then hdsgain, it would go to a different
location. In that case you might have two entries for the skeyeor you might not be able to find
a key. Either way, the dictionary wouldn’t work correctly.

That's why the keys have to be hashable, and why mutable tigeelsts aren’t. The simplest way
to get around this limitation is to use tuples, which we wilesn the next chapter.

Since dictionaries are mutable, they can't be used as kaythéycan be used as values.

Exercise 11.5Read the documentation of the dictionary metketdefault ~ and use it to write a
more concise version dfvert_dict

11.5 Memos

If you played with thefibonacci function from Section 6.7, you might have noticed that trgger
the argument you provide, the longer the function takes o Furrthermore, the run time increases
very quickly.

To understand why, consider thdall graph for fibonacci with n=4:

fibonacci

n—4
fibonacci fibonacci
n— 3 n— 2
fibonacci fibonacci fibonacci fibonacci
n—s 2 n— 1 n—1 n—s20
fibonacci fibonacci
n—s 1 n—0

A call graph shows a set of function frames, with lines cotingoceach frame to the frames of the
functions it calls. At the top of the grapfijonacci with n=4 callsfibonacci with n=3 andn=2.
In turn,fibonacci with n=3 callsfibonacci ~ with n=2 andn=1. And so on.

Count how many timefihonacci(0) andfibonacci(1) are called. This is an inefficient solution
to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already beerputed by storing them in a dic-
tionary. A previously computed value that is stored fordatee is called anemo'. Here is an
implementation ofibonacci using memos:

known = {0:0, 1:1}
def fibonacci(n):
if n in known:

return known[n]

res = fibonacci(n-1) + fibonacci(n-2)

1seewikipedia.org/wiki/Memoization

110 Chapter 11. Dictionaries

known[n] = res
return res

known is a dictionary that keeps track of the Fibonacci numberslveady know. It starts with two
items: O mapsto 0 and 1 mapsto 1.

Whenevefibonacci is called, it check&nown. If the result is already there, it can return immedi-
ately. Otherwise it has to compute the new value, add it talittonary, and return it.

Exercise 11.6Run this version ofibonacci and the original with a range of parameters and
compare their run times.

11.6 Global variables

In the previous examplénown is created outside the function, so it belongs to the spéeaie
called__main__ . Variablesin_main__ are sometimes calleglobal because they can be accessed
from any function. Unlike local variables, which disappedren their function ends, global vari-
ables persist from one function call to the next.

Itis common to use global variables fitegs that is, boolean variables that indicate (“flag”) whether
a condition is true. For example, some programs use a flagdheertmse to control the level of
detail in the output:

verbose = True
def examplel():

if verbose:
print(' Running examplel ')

If you try to reassign a global variable, you might be sugxisThe following example is supposed
to keep track of whether the function has been called:

been_called = False
def example2():
been_called = True # WRONG

But if you run it you will see that the value @dken_called doesn’t change. The problem is that
example2 creates a new local variable names#n_called . The local variable goes away when
the function ends, and has no effect on the global variable.

To reassign a global variable inside a function you haveetclare the global variable before you
use it:

been called = False
def example2():

global been_called
been_called = True

The global statement tells the interpreter something like, “In thisxdtion, when | say
been_called , I mean the global variable; don't create a local one.”

Here’s an example that tries to update a global variable:

11.7. Debugging 111

count = 0

def example3():
count = count + 1 # WRONG

If you run it you get:
UnboundLocalError: local variable " count ' referenced before assignment

Python assumes thabunt is local, which means that you are reading it before writingTihe
solution, again, is to declameunt global.

def example3():
global count
count += 1

If the global value is mutable, you can modify it without daahg it:
known = {0:0, 1:1}

def exampled():
known[2] = 1

So you can add, remove and replace elements of a global d&ttaynary, but if you want to reassign
the variable, you have to declare it:

def example5():
global known
known = dict()

11.7 Debugging

As you work with bigger datasets it can become unwieldy tauddty printing and checking data
by hand. Here are some suggestions for debugging largeatisitas

Scale down the input: If possible, reduce the size of the dataset. For example iptbgram reads
a text file, start with just the first 10 lines, or with the sreatlexample you can find. You can
either edit the files themselves, or (better) modify the paiogso it reads only the firstlines.

If there is an error, you can redundo the smallest value that manifests the error, and then
increase it gradually as you find and correct errors.

Check summaries and types:Instead of printing and checking the entire dataset, cengidnting
summaries of the data: for example, the number of items irct#iodiary or the total of a list
of numbers.

A common cause of runtime errors is a value that is not the tigte. For debugging this
kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatidedr example,
if you are computing the average of a list of numbers, youaahleck that the result is not
greater than the largest element in the list or less thanrtatlest. This is called a “sanity
check” because it detects results that are “insane.”

Another kind of check compares the results of two differesrhputations to see if they are
consistent. This is called a “consistency check.”

112 Chapter 11. Dictionaries

Pretty print the output: Formatting debugging output can make it easier to spot am. afe saw
an example in Section 6.9. Thgrint module provides aprint function that displays
built-in types in a more human-readable format.

Again, time you spend building scaffolding can reduce theetiyou spend debugging.

11.8 Glossary

dictionary: A mapping from a set of keys to their corresponding values.
key-value pair: The representation of the mapping from a key to a value.
item: Another name for a key-value pair.

key: An object that appears in a dictionary as the first part of avaye pair.

value: An object that appears in a dictionary as the second part efyav&lue pair. This is more
specific than our previous use of the word “value.”

implementation: A way of performing a computation.
hashtable: The algorithm used to implement Python dictionaries.
hash function: A function used by a hashtable to compute the location forya ke

hashable: A type that has a hash function. Immutable types like integioats and strings are
hashable; mutable types like lists and dictionaries are not

lookup: A dictionary operation that takes a key and finds the cornedimg value.

reverse lookup: A dictionary operation that takes a value and finds one or rkeys that map to
it.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the exetofia program, with an
arrow from each caller to each callee.

histogram: A set of counters.
memo: A computed value stored to avoid unnecessary future cornipata

global variable: A variable defined outside a function. Global variables camatcessed from any
function.

flag: A boolean variable used to indicate whether a conditioruis.tr

declaration: A statement likeglobal that tells the interpreter something about a variable.

11.9. Exercises 113

11.9 Exercises

Exercise 11.71f you did Exercise 10.5, you already have a function nahesdduplicates ~ that
takes a list as a parameter and retuime if there is any object that appears more than once in the
list.

Use a dictionary to write a faster, simpler versiorhag_duplicates

Exercise 11.8Two words are “rotate pairs” if you can rotate one of them aatltge other (see
rotate_ word in Exercise 8.12).

Write a program that reads a wordlist and finds all the rotatesp

Exercise 11.9Here’s another Puzzler frofar Talk?:

This was sent in by a fellow named Dan O’Leary. He came uponmanoon one-
syllable, five-letter word recently that has the followingique property. When you
remove the first letter, the remaining letters form a homaghaf the original word,
that is a word that sounds exactly the same. Replace theditst,Ithat is, put it back
and remove the second letter and the result is yet anotheogioone of the original
word. And the question is, what'’s the word?

Now I'm going to give you an example that doesn’t work. Letek at the five-letter
word, ‘wrack.” W-R-A-C-K, you know like to ‘wrack with pain.If | remove the first

letter, | am left with a four-letter word, 'R-A-C-K." As in,Holy cow, did you see the
rack on that buck! It must have been a nine-pointer!’ It's &g@a homophone. If you
put the ‘w’ back, and remove the ‘r, instead, you're left vthe word, ‘wack, which

is a real word, it's just not a homophone of the other two words

But there is, however, at least one word that Dan and we knowltth will yield two
homophones if you remove either of the first two letters to enako, new four-letter
words. The question is, what’s the word?

You can use the dictionary from Exercise 11.1 to check whetlstring is in the word list.

To check whether two words are homophones, you can use the Ridhbuncing Dictionary. You
can download it fronwww.speech.cs.cmu.edu/cgi-bin/cmudict or from thinkpython.com/
code/c06d and you can also downlodkinkpython.com/code/pronounce.py , Which provides

a function namedead_dictionary that reads the pronouncing dictionary and returns a Python
dictionary that maps from each word to a string that dessritseprimary pronunciation.

Write a program that lists all the words that solve the Puzzl¥ou can see my solution at
thinkpython.com/code/homophone.py

2www.cartalk.com/content/puzzler/transcripts/200717

114 Chapter 11. Dictionaries

Chapter 12

Tuples

12.1 Tuples are immutable

A tuple is a sequence of values. The values can be any typehapdre indexed by integers, so in
that respect tuples are a lot like lists. The important diffee is that tuples are immutable.

Syntactically, a tuple is a comma-separated list of values:

>>t= 'a, 'b, 'c, 'd, '€

Although it is not necessary, it is common to enclose tupigsirentheses:
>>t=('a, '"b, 'c, "d, "e)

To create a tuple with a single element, you have to includesd iomma:

>>>tl = 'a
>>> type(tl)
<class ' tuple ' >

A value in parentheses is not a tuple:

>>> 2 =('a")
>>> type(t2)
<class ‘' str '>

Another way to create a tuple is the built-in functitople . With no argument, it creates an empty
tuple:

>>> t = tuple()
>>> print(t)
0

If the argument is a sequence (string, list or tuple), theltds a tuple with the elements of the
sequence:

>>> t = tuple(' lupins ')
>>> print(t)

116 Chapter 12. Tuples

Becausduple is the name of a built-in function, you should avoid usingsiavariable name.

Most list operators also work on tuples. The bracket operatiexes an element:

>>t=('a, 'b, 'c, "d, 'e)
>>> print(t[0])
-

And the slice operator selects a range of elements.

>>> print(t[1:3])

(‘b)

But if you try to modify one of the elements of the tuple, you ge error:

>>> 0] = 'A
TypeError: object doesn 't support item assignment

You can’t modify the elements of a tuple, but you can replawetople with another:

>>>t = (A + 1]
>>> print(t)
("A, 'b", "c', "d, 'e")

12.2 Tuple assignment

It is often useful to swap the values of two variables. Withn@ntional assignments, you have to
use a temporary variable. For example, to seamdb:

>>> temp = a
>>>a=Dh
>>> b = temp

This solution is cumbersomtyple assignmentis more elegant:
>>>a, b=D a

The left side is a tuple of variables; the right side is a tugflexpressions. Each value is assigned
to its respective variable. All the expressions on the rigjle are evaluated before any of the
assignments.

The number of variables on the left and the number of valugh®night have to be the same:

>>>a, b=1 2 3
ValueError: too many values to unpack

More generally, the right side can be any kind of sequencmdgstlist or tuple). For example, to
split an email address into a user name and a domain, you eoiiéd

>>> addr = ' monty@python.org
>>> uname, domain = addr.split(‘@)

The return value fronsplit is a list with two elements; the first element is assigneghtane, the
second talomain .

12.3. Tuples as return values 117

>>> print(uname)
monty

>>> print(domain)
python.org

12.3 Tuples as return values

Strictly speaking, a function can only return one value,ibthe value is a tuple, the effect is the
same as returning multiple values. For example, if you waudiide two integers and compute the
guotient and remainder, it is inefficient to compute and therx%y. It is better to compute them

both at the same time.

The built-in functiondivmod takes two arguments and returns a tuple of two values, théemqio
and remainder. You can store the result as a tuple:

>>> t = divmod(7, 3)
>>> print(t)
2 1)

Or use tuple assignment to store the elements separately:

>>> quot, rem = divmod(7, 3)
>>> print(quot)

2

>>> print(rem)

1

Here is an example of a function that returns a tuple:

def min_max(t):
return min(t), max(t)

maxandmin are built-in functions that find the largest and smallesielrts of a sequencmin_max
computes both and returns a tuple of two values.

12.4 Variable-length argument tuples

Functions can take a variable number of arguments. A paeamamme that begins with gathers
arguments into a tuple. For examppentall takes any number of arguments and prints them:

def printall(*args):
print(args)

The gather parameter can have any name you likegrhsitis conventional. Here’s how the function
works:

>>> printall(1, 2.0, '3)

(X 20, '3")

The complement of gather geatter. If you have a sequence of values and you want to pass it to a
function as multiple arguments, you can use*tlmperator. For exampléivmod takes exactly two

arguments; it doesn’t work with a tuple:

118 Chapter 12. Tuples

>>> t = (7, 3)
>>> divmod(t)
TypeError: divmod expected 2 arguments, got 1

But if you scatter the tuple, it works:

>>> divmod(*t)
@ 1

Exercise 12.1Many of the built-in functions use variable-length argumeples. For example,
max andmin can take any number of arguments:

>>> max(1,2,3)
3

But sum does not.

>>> sum(1,2,3)
TypeError: sum expected at most 2 arguments, got 3

Write a function calledumall that takes any number of arguments and returns their sum.

12.5 Lists and tuples

zip is a built-in function that takes two or more sequences ais"zhem into a list of tuples
where each tuple contains one element from each sequence.

This example zips a string and a list:

>>> 5 = 'abc

>>>t =0, 1, 2]

>>> for e in zip(s, t):
print(e)

("a', 0
("b, 1
("¢, 2

The result is basically an iterator over a list of tuples veheaich tuple contains a character from the
string and the corresponding element from the list.

If the sequences are not the same length, the result hagtth lef the shorter one.

>>> for e in zip(' Anne', "EK"'):
print(e)

You can use tuple assignment ifoa loop to traverse a list of tuples:

1Technically,zip returns an iterator of tuples, but for most purposes, aatitebehaves like a list.

12.6. Dictionaries and tuples 119

t=["a,0, (b1, (" "c,2)]
for letter, number in t:
print(number, letter)

Each time through the loop, Python selects the next tupl@enlist and assigns the elements to
letter andnumber. The output of this loop is:

N - O
o T o

If you combinezip , for and tuple assignment, you get a useful idiom for traversirgg(br more)
sequences at the same time. For exantfag match takes two sequenced, andt2 , and returns
True if there is an index such thatl[i] == t2[i]

def has_match(tl, t2):
for x, y in zip(tl, t2):
if x == vy
return True
return False

If you need to traverse the elements of a sequence and tha&e#) you can use the built-in function
enumerate :

for index, element in enumerate("abc'):
print(index, element)

The output of this loop is:

N - O
o T o

Again.

12.6 Dictionaries and tuples

Dictionaries have a method calléeims thateffectively returns a list of tuples, where each tuple is
a key-value pair.

>>d={"a":0 'b: "'c':2}

>>> t = d.items()

>>> type(t)

<class ' dict items ' >

>>> print(t)

dict_items([('a', 0,('c,2,('b,1)
>>> for e in t:

print(e)
("a, 0
("¢, 2
("b, 1

120 Chapter 12. Tuples

As you should expect from a dictionary, the items are in ndi@aar order.
Conversely, you can use a list of tuples to initialize a nestidnary:

>>t="a,0,('c,2 ("b, 1

>>> d = dict(t)

>>> print(d)

{ra': 0, 'c':2, "b':1}

Combiningdict with zip yields a concise way to create a dictionary:

>>> d = dict(zip(' abc', range(3)))
>>> print(d)
{ra': 0, 'c':2 'b':1

The dictionary methodpdate also takes a list of tuples and adds them, as key-value paies)
existing dictionary.

Combiningitems , tuple assignment arfdr , you get the idiom for traversing the keys and values
of a dictionary:

for key, val in d.items():
print(val, key)

The output of this loop is:

= N O
o o0 Qo

Again.

It is common to use tuples as keys in dictionaries (primdrégause you can't use lists). For ex-
ample, a telephone directory might map from last-name -fiaghe pairs to telephone numbers.
Assuming that we have definédt |, first andnumber, we could write:

directory[last,first] = number
The expression in brackets is a tuple. We could use tuplgras&int to traverse this dictionary.

for last, first in directory:
print(first, last, directory[last,first])

This loop traverses the keys rectory , which are tuples. It assigns the elements of each tuple
tolast andfirst , then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram.nibiie detailed version shows the
indices and elements just as they appear in a list. For exartip tuplg(' Cleese ', ' John')
would appear:

tuple

0 —= ’'Cleese’

1 —= 'John’

But in a larger diagram you might want to leave out the detafler example, a diagram of the
telephone directory might appear:

12.7. Comparing tuples 121

dict

('Cleese’, 'John’) —= ’'08700 100 222’
(Chapman’, 'Graham’) —= '08700 100 222’
(ldle’, ’Eric’) —= ’08700 100 222’

('Gilliam’, 'Terry’) —= '08700 100 222’
('Jones’, 'Terry’) —= ’'08700 100 222’
('Palin’, '"Michael’) —= 08700 100 222’

Here the tuples are shown using Python syntax as a graphimahand.

The telephone number in the diagram is the complaints linthidBBC, so please don't call it.

12.7 Comparing tuples

The relational operators work with tuples and other segegreython starts by comparing the first
element from each sequence. If they are equal, it goes oretoekt elements, and so on, until it
finds elements that differ. Subsequent elements are notd=yed (even if they are really big).

>>> (0, 1, 2) < (0, 3, 4)

True

>>> (0, 1, 2000000) < (0, 3, 4)
True

Thesort function works the same way. It sorts primarily by first eledut in the case of a tie, it
sorts by second element, and so on.

This feature lends itself to a pattern calle&U for

Decorate a sequence by building a list of tuples with one or more sors kgeceding the elements
from the sequence,

Sort the list of tuples, and

Undecorate by extracting the sorted elements of the sequence.

For example, suppose you have a list of words and you wanttdhtsan from longest to shortest:

def sort_by length(words):
t =1
for word in words:
t.append((len(word), word))

t.sort(reverse=True)

res =]

for length, word in t;
res.append(word)

return res

122 Chapter 12. Tuples

The first loop builds a list of tuples, where each tuple is adymeceded by its length.

sort compares the first element, length, first, and only consithersecond element to break ties.
The keyword argumeméverse=True tellssort to go in decreasing order.

The second loop traverses the list of tuples and builds aflisbrds in descending order of length.

Exercise 12.21n this example, ties are broken by comparing words, so waittsthe same length
appear in reverse alphabetical order. For other applicatou might want to break ties at random.
Modify this example so that words with the same length appeaandom order. Hint: see the
random function in therandom module.

12.8 Sequences of sequences

| have focused on lists of tuples, but almost all of the examjh this chapter also work with lists
of lists, tuples of tuples, and tuples of lists. To avoid eeuating the possible combinations, it is
sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (striligis and tuples) can be used interchange-
ably. So how and why do you choose one over the others?

To start with the obvious, strings are more limited than p#eguences because the elements have
to be characters. They are also immutable. If you need thigyabichange the characters in a string
(as opposed to creating a new string), you might want to uist eficharacters instead.

Lists are more common than tuples, mostly because they ar@btau But there are a few cases
where you might prefer tuples:

1. In some contexts, like @turn statement, it is syntactically simpler to create a tupletha
list. In other contexts, you might prefer a list.

2. If you want to use a sequence as a dictionary key, you hausg¢@n immutable type like a
tuple or string.

3. If you are passing a sequence as an argument to a funcsiog, wples reduces the potential
for unexpected behavior due to aliasing.

Because tuples are immutable, they don't provide methédsdirt andreverse , which modify
existing lists. But Python provides the built-in functioststed andreversed , which take any
sequence as a parameter and return a new list with the samerekein a different order.

12.9 Debugging

Lists, dictionaries and tuples are known genericallgats structures; in this chapter we are start-
ing to see compound data structures, like lists of tupled,dactionaries that contain tuples as keys
and lists as values. Compound data structures are usefuhdyuare prone to what | cafhape
errors; that is, errors caused when a data structure has the wrpeg $jze or composition. For
example, if you are expecting a list with one integer and &gigu a plain old integer (not in a list),
it won't work.

12.10. Glossary 123

To help debug these kinds of errors, | have written a modulectatructshape that provides a
function, also calledtructshape , that takes any kind of data structure as an argument and re-
turns a string that summarizes its shape. You can downlo&drit thinkpython.com/code/
structshape.py

Here’s the result for a simple list:

>>> from structshape import structshape
>>> t = [1,2,3]

>>> print(structshape(t))

list of 3 int

A fancier program might write “list of 3 irg” but it was easier not to deal with plurals. Here’s a list
of lists:

>>> 2 = [[1,2], [3,4], [5,6]]
>>> print(structshape(t2))
list of 3 list of 2 int

If the elements of the list are not the same tygeictshape groups them, in order, by type:

>>> t3 = [1, 2, 3, 4.0, "5, "6, 7], 8, 9]
>>> print(structshape(t3))
list of (3 int, float, 2 str, 2 list of int, int)

And here’s a dictionary with 3 items that map integers tongsi

>>> S abc
>>> |t = zip(t, S)

>>> d = dict(lt)

>>> print(structshape(d))
dict of 3 int->str

If you are having trouble keeping track of your data struesistructshape can help.

12.10 Glossary
tuple: Animmutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuplariatles on the
left. The right side is evaluated and then its elements aigmesd to the variables on the left.

gather: The operation of assembling a variable-length argumerétup
scatter: The operation of treating a sequence as a list of arguments.

DSU: Abbreviation of “decorate-sort-undecorate,” a patteiat thvolves building a list of tuples,
sorting, and extracting part of the result.

data structure: A collection of related values, often organized in listgtidinaries, tuples, etc.

shape (of a data structure): A summary of the type, size and composition of a data stractur

124 Chapter 12. Tuples

12.11 Exercises

Exercise 12.3Write a function callednost_frequent that takes a string and prints the letters in
decreasing order of frequency. Find text samples from séddferent languages and see how letter
frequency varies between languages. Compare your resiilisttve tables atvikipedia.org/
wiki/Letter_frequencies

Exercise 12.4More anagrams!

1. Write a program that reads a word list from a file (see Se@id) and prints all the sets of
words that are anagrams.

Here is an example of what the output might look like:

['deltas ', 'desalt ', 'lasted ', 'salted ', 'slated ', 'staled ']
['retainers ', 'ternaries ']

[' generating ', ' greatening ']

['resmelts ', 'smelters ', 'termless ']

Hint: you might want to build a dictionary that maps from a sktetters to a list of words
that can be spelled with those letters. The question is, fawou represent the set of letters
in a way that can be used as a key?

2. Modify the previous program so that it prints the largestef anagrams first, followed by the
second largest set, and so on.

3. In Scrabble a “bingo” is when you play all seven tiles in yack, along with a letter on the
board, to form an eight-letter word. What set of 8 lettersifeithe most possible bingos?
Hint: there are seven.

4. Two words form a “metathesis pair” if you can transform amt the other by swapping
two letter$; for example, “converse” and “conserve.” Write a programttfinds all of the
metathesis pairs in the dictionary. Hint: don’t test allrpaif words, and don't test all possible
swaps.

You can download a solution frothinkpython.com/code/anagram_sets.py

Exercise 12.5Here’s another Car Talk Puzzfer

What is the longest English word, that remains a valid Ehghisrd, as you remove its
letters one at a time?

Now, letters can be removed from either end, or the middieybu can’t rearrange any
of the letters. Every time you drop a letter, you wind up wittother English word.

If you do that, you're eventually going to wind up with onetétand that too is going
to be an English word—one that’s found in the dictionary. htvio know what's the

longest word and how many letters does it have?

I’'m going to give you a little modest example: Sprite. Ok? “iart off with sprite,
you take a letter off, one from the interior of the word, take t away, and we're left
with the word spite, then we take the e off the end, we're lethwpit, we take the s
off, we're left with pit, it, and I.

2This exercise is inspired by an exampleatzlers.org
Swww.cartalk.com/content/puzzler/transcripts/200651

12.11. Exercises 125

Write a program to find all words that can be reduced in this,\&ay then find the longest one.

This exercise is a little more challenging than most, so hezesome suggestions:

1. You might want to write a function that takes a word and cotap a list of all the words that
can be formed by removing one letter. These are the “chifdsEthe word.

2. Recursively, a word is reducible if any of its children aeducible. As a base case, you can
consider the empty string reducible.

3. The wordlist | providedwords.txt , doesn’t contain single letter words. So you might want
to add “I”, “a”, and the empty string.

4. To improve the performance of your program, you might iamhemoize the words that are
known to be reducible.

You can see my solution #tinkpython.com/code/reducible.py

126 Chapter 12. Tuples

Chapter 13

Case study: data structure selection

13.1 Word frequency analysis

As usual, you should at least attempt the following exescisfore you read my solutions.

Exercise 13.1Write a program that reads a file, breaks each line into watdgs whitespace and
punctuation from the words, and converts them to lowercase.

Hint: Thestring module provides strings nametiitespace , which contains space, tab, newline,
etc., andhunctuation ~ which contains the punctuation characters. Let's see ifarenasake Python
swear:

>>> import string
>>> print(string.punctuation)
H$%& ' () +,-/;;<=>?@[\]_ ¥

Also, you might consider using the string methatilp |, replace andtranslate

Exercise 13.2Go to Project Gutenbergytenberg.org) and download your favorite out-of-
copyright book in plain text format.

Modify your program from the previous exercise to read thekogou downloaded, skip over the
header information at the beginning of the file, and prodessest of the words as before.

Then modify the program to count the total number of wordditiook, and the number of times
each word is used.

Print the number of different words used in the book. Compléferent books by different authors,
written in different eras. Which author uses the most extensocabulary?

Exercise 13.3Modify the program from the previous exercise to print ther&ist frequently-used
words in the book.

Exercise 13.4Modify the previous program to read a word list (see Sectid) &nd then print all
the words in the book that are not in the word list. How manyheft are typos? How many of them
are common words thahould be in the word list, and how many of them are really obscure?

128 Chapter 13. Case study: data structure selection

13.2 Random numbers

Given the same inputs, most computer programs generataurie sutputs every time, so they are
said to baleterministic. Determinism is usually a good thing, since we expect theeszatctulation
to yield the same result. For some applications, though, we #he computer to be unpredictable.
Games are an obvious example, but there are more.

Making a program truly nondeterministic turns out to be romesasy, but there are ways to make
it at least seem nondeterministic. One of them is to use itgos that generatpseudorandom
numbers. Pseudorandom numbers are not truly random betaysee generated by a deterministic
computation, but just by looking at the numbers it is all bupossible to distinguish them from
random.

Therandom module provides functions that generate pseudorandom arg@which | will simply
call “random” from here on).

The functionrandom returns a random float between 0.0 and 1.0 (including 0.0 bu1:0). Each
time you callrandom, you get the next number in a long series. To see a samplehigiloop:

import random

for i in range(10):
X = random.random()
print(x)

The functiorrandint takes parametetsv andhigh and returns an integer betwelew andhigh
(including both).

>>> random.randint(5, 10)
5
>>> random.randint(5, 10)
9

To choose an element from a sequence at random, you cahaise :

>>> t = [1, 2, 3]
>>> random.choice(t)
2

>>> random.choice(t)
3

Therandom module also provides functions to generate random valoesd¢ontinuous distributions
including Gaussian, exponential, gamma, and a few more.

Exercise 13.5Write a function namedhoose_from_hist that takes a histogram as defined in
Section 11.1 and returns a random value from the histogrhosen with probability in proportion
to frequency. For example, for this histogram:

>>t=[]"'a, "a, 'b]
>>> h = histogram(t)

>>> print(h)
{ra': 2, 'b: 1}

your function shoulda’ with probability 2/3 and' b' with probability 1/3.

13.3. Word histogram 129

13.3 Word histogram

Here is a program that reads a file and builds a histogram ofitinds in the file:

import string

def process_file(filename):
h = dict()
fp = open(filename)
for line in fp:
process_line(line, h)
return h

def process_line(line, h):
line = line.replace(ety

for word in line.split():
word = word.strip(string.punctuation + string.whitespac e)
word = word.lower()

h{word] = h.get(word, 0) + 1

hist = process_file("emmatxt ')
This program readsmma.txt , which contains the text dmma by Jane Austen.

process_file loops through the lines of the file, passing them one at a timmtess_line . The
histogranh is being used as an accumulator.

process_line uses the string methadplace to replace hyphens with spaces before uspig

to break the line into a list of strings. It traverses the difivords and usestrip andlower to
remove punctuation and convert to lower case. (It is a sharto say that strings are “converted;
remember that string are immutable, so methodsdiifie andlower return new strings.)

Finally, process_line updates the histogram by creating a new item or incremeatingxisting
one.

To count the total number of words in the file, we can add uptbgufencies in the histogram:

def total_words(h):
return sum(h.values())

The number of different words is just the number of items mdfctionary:

def different_ words(h):
return len(h)

Here is some code to print the results:

print(' Total number of words: ', total words(hist))
print(' Number of different words: ', different_words(hist))

And the results:

Total number of words: 161073
Number of different words: 7212

130 Chapter 13. Case study: data structure selection

13.4 Most common words

To find the most common words, we can apply the DSU pattaost_common takes a histogram
and returns a list of word-frequency tuples, sorted in re¥@rder by frequency:

def most_common(h):

t=1
for key, value in h.items():
t.append((value, key))

t.sort(reverse=True)
return t

Here is a loop that prints the ten most common words:

t = most_common(hist)
print(' The most common words are: ')
for freq, word in t[0:10]:

print(word, "\t ', freq)

And here are the results froBmma:

The most common words are:

to 5242
the 5204
and 4897
of 4293
i 3191
a 3130
it 2529

her 2483
was 2400
she 2364

13.5 Optional parameters

We have seen built-in functions and methods that take ablammaumber of arguments. It is possible
to write user-defined functions with optional arguments, tBor example, here is a function that
prints the most common words in a histogram

def print_most_common(hist, num=10)
t = most_common(hist)
print(' The most common words are: ')
for freq, word in t[0:num]:
print(word, "\t ', freq)

The first parameter is required; the second is optional.defeult value of numis 10.
If you only provide one argument:

print_most_common(hist)

13.6. Dictionary subtraction 131

num gets the default value. If you provide two arguments:
print_most_common(hist, 20)

num gets the value of the argument instead. In other words, ttierg argumenbverrides the
default value.

If a function has both required and optional parameterghallrequired parameters have to come
first, followed by the optional ones.

13.6 Dictionary subtraction

Finding the words from the book that are not in the word lisinfrwords.txt is a problem you
might recognize as set subtraction; that is, we want to fihthalwords from one set (the words in
the book) that are not in another set (the words in the list).

subtract takes dictionariedl andd2 and returns a new dictionary that contains all the keys from
d1 that are not indl2. Since we don't really care about the values, we set thero &lbone.

def subtract(dl, d2):
res = dict()
for key in di:
if key not in d2:
resfkey] = None
return res

To find the words in the book that are notwords.txt , we can useprocess_file to build a
histogram fowords.txt , and then subtract:

words = process_file("words.txt ')
diff = subtract(hist, words)

print("The words in the book that aren "t in the word list are:")
for word in diff.keys():
print(word, end =)

Here are some of the results frdfmma;

The words in the book that aren "t in the word list are:
rencontre jane ' s blanche woodhouses disingenuousness
friend ' s venice apartment ...

Some of these words are names and possessives. Otherselik®fitre,” are no longer in common
use. But a few are common words that should really be in thie lis

Exercise 13.6Python provides a data structure calketi that provides many common set opera-
tions. Read the documentationdats.python.org/lib/types-set.html and write a program
that uses set subtraction to find words in the book that argnrtbe word list.

13.7 Random words

To choose a random word from the histogram, the simplestighgois to build a list with multiple
copies of each word, according to the observed frequendyttean choose from the list:

132 Chapter 13. Case study: data structure selection

def random_word(h):
t=1
for word, freq in h.items():
t.extend(jword] * freq)

return random.choice(t)

The expressiofword] * freq creates a list witHreq copies of the stringvord. The extend
method is similar t@ppend except that the argument is a sequence.

Exercise 13.7This algorithm works, but it is not very efficient; each timeuychoose a random
word, it rebuilds the list, which is as big as the original koén obvious improvement is to build
the list once and then make multiple selections, but théslistill big.

An alternative is:

1. Usekeys to get a list of the words in the book.

2. Build a list that contains the cumulative sum of the woedjfrencies (see Exercise 10.1). The
last item in this list is the total number of words in the book,

3. Choose a random number from 1rtoUse a bisection search (See Exercise 10.8) to find the
index where the random number would be inserted in the cuimelsum.

4. Use the index to find the corresponding word in the word list

Write a program that uses this algorithm to choose a randord fvom the book.

13.8 Markov analysis

If you choose words from the book at random, you can get a s&frthe vocabulary, you probably
won’t get a sentence:

this the small regard harriet which knightley ''s it most things

A series of random words seldom makes sense because theredikationship between successive
words. For example, in a real sentence you would expect atedike “the” to be followed by an
adjective or a noun, and probably not a verb or adverb.

One way to measure these kinds of relationships is Markolysiss which characterizes, for a
given sequence of words, the probability of the word that eesmext. For example, the sokgic,
the Half a Bee begins:

Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D’you see?

But can a bee be said to be
Or not to be an entire bee
When half the bee is not a bee
Due to some ancient injury?

1This case study is based on an example from Kernighan and Pi&éractice of Programming, 1999.

13.9. Data structures 133

In this text, the phrase “half the” is always followed by therd “bee,” but the phrase “the bee”
might be followed by either “has” or “is”.

The result of Markov analysis is a mapping from each prefke(fihalf the” and “the bee”) to all
possible suffixes (like “has” and “is”).

Given this mapping, you can generate a random text by sgawtith any prefix and choosing at
random from the possible suffixes. Next, you can combine tigeoé the prefix and the new suffix
to form the next prefix, and repeat.

For example, if you start with the prefix “Half a,” then the heword has to be “bee,” because
the prefix only appears once in the text. The next prefix is “@,"bs0 the next suffix might be
“philosophically,” “be” or “due.”

In this example the length of the prefix is always two, but yan do Markov analysis with any
prefix length. The length of the prefix is called the “ordertlo¢ analysis.

Exercise 13.8Markov analysis:

1. Write a program to read a text from a file and perform Marko&lgsis. The result should be
a dictionary that maps from prefixes to a collection of pdsssiffixes. The collection might
be a list, tuple, or dictionary; it is up to you to make an ajmpiate choice. You can test your
program with prefix length two, but you should write the piagrin a way that makes it easy
to try other lengths.

2. Add afunction to the previous program to generate ran@éstbased on the Markov analysis.
Here is an example frolamma with prefix length 2:

He was very clever, be it sweetness or be angry, ashamedyaonised, at such
a stroke. She had never thought of Hannah till you were neeantrfor me?” |
cannot make speeches, Emma:” he soon cut it all himself.

For this example, | left the punctuation attached to the wofdhe resultis almost syntactically
correct, but not quite. Semantically, it almost makes sdmsenot quite.

What happens if you increase the prefix length? Does the mnedt make more sense?
3. Once your program is working, you might want to try a maph-ifiyou analyze text from

two or more books, the random text you generate will blendidmabulary and phrases from
the sources in interesting ways.

13.9 Data structures

Using Markov analysis to generate random text is fun, buktieealso a point to this exercise: data
structure selection. In your solution to the previous eses; you had to choose:

* How to represent the prefixes.
« How to represent the collection of possible suffixes.

* How to represent the mapping from each prefix to the cobeabf possible suffixes.

134 Chapter 13. Case study: data structure selection

Ok, the last one is the easy; the only mapping type we haveiseedictionary, so it is the natural
choice.

For the prefixes, the most obvious options are string, lissttohgs, or tuple of strings. For the
suffixes, one option is a list; another is a histogram (dictiy).

How should you choose? The first step is to think about theatjpers you will need to implement
for each data structure. For the prefixes, we need to be akdetove words from the beginning and
add to the end. For example, if the current prefix is “Half atldahe next word is “bee,” you need
to be able to form the next prefix, “a bee.”

Your first choice might be a list, since it is easy to add andaesrelements, but we also need to be
able to use the prefixes as keys in a dictionary, so that ruieksts. With tuples, you can’'t append
or remove, but you can use the addition operator to form a oplet

def shift(prefix, word):
return prefix[1:] + (word,)

shift takes a tuple of wordsrefix , and a stringword, and forms a new tuple that has all the
words inprefix — except the first, andord added to the end.

For the collection of suffixes, the operations we need togsarfinclude adding a new suffix (or
increasing the frequency of an existing one), and choosmag@om suffix.

Adding a new sulffix is equally easy for the listimplementatio the histogram. Choosing a random
element from a list is easy; choosing from a histogram is évaaldo efficiently (see Exercise 13.7).

So far we have been talking mostly about ease of implementakiut there are other factors to
consider in choosing data structures. One is run time. Sorastthere is a theoretical reason to
expect one data structure to be faster than other; for exgrnpientioned that them operator is
faster for dictionaries than for lists, at least when the banof elements is large.

But often you don’t know ahead of time which implementatioitl e faster. One option is to
implement both of them and see which is better. This apprsacdlledbenchmarking. A practical
alternative is to choose the data structure that is easigsipiement, and then see if it is fast enough
for the intended application. If so, there is no need to gdfomot, there are tools, like thgrofile
module, that can identify the places in a program that tak&entbst time.

The other factor to consider is storage space. For examgileg @ histogram for the collection of
suffixes might take less space because you only have to stoheweord once, no matter how many
times it appears in the text. In some cases, saving spacelamake your program run faster,
and in the extreme, your program might not run at all if you ount of memory. But for many
applications, space is a secondary consideration aftermen

One final thought: in this discussion, | have implied that Wewdd use one data structure for both
analysis and generation. But since these are separatespiitaseuld also be possible to use one
structure for analysis and then convert to another stradturgeneration. This would be a net win
if the time saved during generation exceeded the time spexriversion.

13.10 Debugging

When you are debugging a program, and especially if you ar&imgoon a hard bug, there are four
things to try:

13.11. Glossary 135

reading: Examine your code, read it back to yourself, and check ttsatyis what you meant to say.

running: Experiment by making changes and running different vessi@ften if you display the
right thing at the right place in the program, the problemdmes obvious, but sometimes
you have to spend some time to build scaffolding.

ruminating: Take some time to think! What kind of error is it: syntax, liam, semantic? What
information can you get from the error messages, or from tlipud of the program? What
kind of error could cause the problem you're seeing? Whatydid change last, before the
problem appeared?

retreating: At some point, the best thing to do is back off, undoing recdranges, until you get
back to a program that works and that you understand. Thegawstarting rebuilding.

Beginning programmers sometimes get stuck on one of thdisétias and forget the others. Each
activity comes with its own failure mode.

For example, reading your code might help if the problem igpmgraphical error, but not if the
problem is a conceptual misunderstanding. If you don'’t ustdé@d what your program does, you
can read it 100 times and never see the error, because thésdrrgour head.

Running experiments can help, especially if you run smathpte tests. But if you run experi-
ments without thinking or reading your code, you might falloi a pattern | call “random walk
programming,” which is the process of making random changgi the program does the right
thing. Needless to say, random walk programming can takagtime.

You have to take time to think. Debugging is like an experitakscience. You should have at least
one hypothesis about what the problem is. If there are twoaerpossibilities, try to think of a test
that would eliminate one of them.

Taking a break helps with the thinking. So does talking. ifigxplain the problem to someone else
(or even yourself), you will sometimes find the answer bejane finish asking the question.

But even the best debugging techniques will fail if theretatemany errors, or if the code you are
trying to fix is too big and complicated. Sometimes the besioops to retreat, simplifying the
program until you get to something that works and that youeustdnd.

Beginning programmers are often reluctant to retreat ksxthiey can’t stand to delete a line of code
(even if it's wrong). If it makes you feel better, copy youpgram into another file before you start
stripping it down. Then you can paste the pieces back inla btt at a time.

Finding a hard bug requires reading, running, ruminating,sometimes retreating. If you get stuck
on one of these activities, try the others.

13.11 Glossary

deterministic: Pertaining to a program that does the same thing each timest given the same
inputs.

pseudorandom: Pertaining to a sequence of numbers that appear to be rafdo@re generated
by a deterministic program.

default value: The value given to an optional parameter if no argument igigeal.

136 Chapter 13. Case study: data structure selection

override: To replace a default value with an argument.

benchmarking: The process of choosing between data structures by implamgeaiternatives and
testing them on a sample of the possible inputs.

13.12 Exercises

Exercise 13.9The “rank” of a word is its position in a list of words sorted fsgquency: the most
common word has rank 1, the second most common has rank 2, etc.

Zipf’s law describes a relationship between the ranks agglfencies of words in natural languages
Specifically, it predicts that the frequendy,of the word with rank is:

f=cr s

wheres andc are parameters that depend on the language and the texu téle the logarithm of
both sides of this equation, you get:

logf =logc— slogr
So if you plot logf versus log, you should get a straight line with slopes and intercept log.
Write a program that reads a text from a file, counts word feagies, and prints one line for each

word, in descending order of frequency, with b@nd log. Use the graphing program of your

choice to plot the results and check whether they form agdttdine. Can you estimate the value of
s?

2Seewikipedia.org/wiki/Zipf's_law

Chapter 14

Files

14.1 Persistence

Most of the programs we have seen so far are transient in tise 4bat they run for a short time
and produce some output, but when they end, their data disappf you run the program again, it
starts with a clean slate.

Other programs arpersistent they run for a long time (or all the time); they keep at leashe of
their data in permanent storage (a hard drive, for examate);if they shut down and restart, they
pick up where they left off.

Examples of persistent programs are operating systemshwim pretty much whenever a computer
is on, and web servers, which run all the time, waiting foluests to come in on the network.

One of the simplest ways for programs to maintain their dabgyireading and writing text files. We
have already seen programs that read text files; in this eheygt will see programs that write them.

An alternative is to store the state of the program in a da&@bla this chapter | will present a simple
database and a modupiskle , that makes it easy to store program data.

14.2 Reading and writing

Atext file is a sequence of characters stored on a permanaitimdke a hard drive, flash memory,
or CD-ROM. We saw how to open and read a file in Section 9.1.

To write a file, you have to open it with mode/ as a second parameter:

>>> fout = open(' outputtxt ', 'w)
>>> print(fout)
< io.TextiOWrapper name= ' outputtxt ' mode= W encoding= ' cpl252"' >

If the file already exists, opening it in write mode clears the old data and starts fresh, so be
careful! If the file doesn't exist, a new one is created.

Thewrite method puts data into the file.

138 Chapter 14. Files

>>> linel = "This here 's the wattle,\n"
>>> fout.write(linel)

Again, the file object keeps track of where it is, so if you ealle again, it adds the new data to
the end.

>>> |ine2 = "the emblem of our land.\n"
>>> fout.write(line2)

When you are done writing, you have to close the file.

>>> fout.close()

14.3 Format operator

The argument ofvrite has to be a string, so if we want to put other values in a file, axeeho
convert them to strings. The easiest way to do that is stith

>>> x = 52
>>> fwrite(str(x))

An alternative is to use thfermat operator, % When applied to integer%is the modulus operator.
But when the first operand is a strirtgis the format operator.

The first operand is thiermat string , which contains one or mofermat sequenceswhich specify
how the second operand is formatted. The result is a string.

For example, the format sequerickd means that the second operand should be formatted as an
integer @ stands for “decimal”):

>>> camels = 42
>>> ' %d % camels
"4

The result is the string42' , which is not to be confused with the integer vafize
A format sequence can appear anywhere in the string, so yoermhed a value in a sentence:

>>> camels = 42
>>> ' | have spotted %d camels.
"| have spotted 42 camels. '

% camels

If there is more than one format sequence in the string, tbergbargument has to be a tuple. Each
format sequence is matched with an element of the tuple deror

The following example use's%d to format an integer, %g to format a floating-point number
(don’'t ask why), and %s to format a string:

>>> ' In %d years | have spotted %g %s. ' % (3, 0.1, ' camels"')
"In 3 years | have spotted 0.1 camels. '

The number of elements in the tuple has to match the numberofat sequences in the string.
Also, the types of the elements have to match the format segse

14.4. Filenames and paths 139

>>> ' %d %d %d % (1, 2)

TypeError: not enough arguments for format string
>>> ' %d %' dollars

TypeError: %d format: a number is required, not str

In the first example, there aren’t enough elements; in therskche element is the wrong type.

The format operator is powerful, but it can be difficult to u¥eu can read more about it dacs.
python.org/lib/typesseq-strings.html

14.4 Filenames and paths

Files are organized intdirectories (also called “folders”). Every running program has a “cuatre
directory,” which is the default directory for most opeaais. For example, when you open a file for
reading, Python looks for it in the current directory.

Theos module provides functions for working with files and dira@s (“os” stands for “operating
system”).os.getewd returns the name of the current directory:

>>> import 0s
>>> cwd = os.getcwd()
>>> print(cwd)
/home/dinsdale

cwd stands for “current working directory.” The result in thisaenple islhome/dinsdale , which
is the home directory of a user nanuiasdale

A string like cwd that identifies a file is called path. A relative path starts from the current
directory; amabsolute pathstarts from the topmost directory in the file system.

The paths we have seen so far are simple filenames, so thesla@tiee to the current directory. To
find the absolute path to a file, you can wseath.abspath

>>> os.path.abspath(" memo.txt ')
' Ihome/dinsdale/memo.txt '

o0s.path.exists checks whether a file or directory exists:

>>> os.path.exists(" memo.txt ')

True

o0s.path.isdir checks whether it's a directory:

>>> 0s.path.isdir(" memo.txt ')

False

>>> 0s.path.isdir(' music ')

True

Similarly, os.path.isfile checks whether it’s a file.

os.listdir returns a list of the files (and other directories) in the gidéeectory:

>>> os.listdir(cwd)
[music', ' photos

, " 'memo.txt ']

140 Chapter 14. Files

To demonstrate these functions, the following example Kefahrough a directory, prints the names
of all the files, and calls itself recursively on all the di@res.

def walk(dir):
for name in os.listdir(dir):
path = os.path.join(dir, name)

if os.path.isfile(path):
print(path)

else:
walk(path)

o0s.path.join takes a directory and a file name and joins them into a compédte

Exercise 14.1Modify walk so that instead of printing the names of the files, it returtisteof
names.

Exercise 14.2Theos module provides a function calleehlk that is similar to this one but more
versatile. Read the documentation and use it to print theesarfithe files in a given directory and
its subdirectories.

14.5 Catching exceptions

A lot of things can go wrong when you try to read and write filésyou try to open a file that
doesn’t exist, you get al®Error :

>>> fin = open(' bad file ')
IOError: [Errno 2] No such file or directory: ' bad file

If you don’t have permission to access a file:

>>> fout = open(' /fetc/passwd ', 'w)
IOError: [Errno 13] Permission denied: ' letc/passwd

And if you try to open a directory for reading, you get

>>> fin = open(' /home")
IOError: [Erro 21] Is a directory

To avoid these errors, you could use functions bkeath.exists andos.path.isfile , but it
would take a lot of time and code to check all the possibdi{ji¢ “Errno 21 ” is any indication,
there are at least 21 things that can go wrong).

Itis better to go ahead and try, and deal with problems if thegypen, which is exactly what thrg
statement does. The syntax is similar tafarstatement:

try:
fin = open(' bad_file ')
for line in fin:
print(line)
fin.close()
except:
print(' Something went wrong. ')

14.6. Databases 141

Python starts by executing titrg clause. If all goes well, it skips thexcept clause and proceeds.
If an exception occurs, it jumps out of thrig clause and executes thecept clause.

Handling an exception with agxcept statement is calledatching an exception. In this example,
theexcept clause prints an error message that is not very helpful. heg#, catching an exception
gives you a chance to fix the problem, or try again, or at leadtiee program gracefully.

14.6 Databases

A databaseis a file that is organized for storing data. Most databasee@anized like a dictionary
in the sense that they map from keys to values. The biggdseteiifce is that the database is on disk
(or other permanent storage), so it persists after the prognds.

The moduladbm provides an interface for creating and updating databaese fls an example, I'll
create a database that contains captions for image files.

Opening a database is similar to opening other files:

>>> import dbm
>>> db = dbm.open(' captions.db ', '¢c')

The modé ¢' means that the database should be created if it doesn’tigleedst. The result is a
database object that can be used (for most operations) liketianary. If you create a new item,
dbm updates the database file.

>>> db[' cleese.png '] = ' Photo of John Cleese.

When you access one of the iterdbm reads the file (notice thabm stores the keys and values as
bytes):

>>> print(db] ' cleese.png '])
b' Photo of John Cleese.

If you make another assignment to an existing kiey replaces the old value:

>>> db[' cleese.png '] = ' Photo of John Cleese doing a silly walk.
>>> print(db] ' cleese.png ')
b' Photo of John Cleese doing a silly walk.

Many dictionary methods, likkeys anditems , also work with database objects. So does iteration
with afor statement.

for key in db:
print(key)

As with other files, you should close the database when yodame:

>>> db.close()

14.7 Pickling

A limitation of dbmis that the keys and values have to be bytes (strings are edyelf you try to
use any other type, you get an error.

142 Chapter 14. Files

Thepickle module can help. It translates almost any type of objectliytes suitable for storage
in a database, and then translates strings back into objects

pickle.dumps takes an object as a parameter and returns a bytes reptase(hamps is short for
“dump bytes”):

>>> import pickle

>>>t = [1, 2, 3

>>> pickle.dumps(t)

b' \x80\x03]q\x00(K\x01K\x02K\x03e. '

The format isn’t obvious to human readers; it is meant to b&y dar pickle to interpret.
pickle.loads (“load bytes”) reconstitutes the object:

>>>t1 = [1, 2, 3]

>>> s = pickle.dumps(tl)
>>> t2 = pickle.loads(s)
>>> print(t2)

[1, 2, 3]

Although the new object has the same value as the old, it iimgeneral) the same object:

>>> t1 == 12
True
>>> t1is 12
False

In other words, pickling and then unpickling has the sameatfis copying the object.

You can usepickle to store non-strings in a database. In fact, this combinasi®do common that
it has been encapsulated in a module cadletve .

Exercise 14.3If you did Exercise 12.4, modify your solution so that it desaa database that maps
from each word in the list to a list of words that use the samefdetters.

Write a different program that opens the database and phietsontents in a human-readable format.

14.8 Pipes

Most operating systems provide a command-line interfalse, known as ahell. Shells usually
provide commands to navigate the file system and launchagigins. For example, in Unix, you
can change directories witld, display the contents of a directory with, and launch a web browser
by typing (for examplejirefox

Any program that you can launch from the shell can also bedaed from Python using gipe. A
pipe is an object that represents a running process.

For example, the Unix commarsl -| normally displays the contents of the current directory (in
long format). You can launck with os.popen :

>>>cmd ="' 1Is -l
>>> fp = os.popen(cmd)

14.9. Writing modules 143

The argument is a string that contains a shell command. Thenrealue is an object that behaves
just like an open file. You can read the output fromltherocess one line at a time witkadline
or get the whole thing at once withad :

>>> res = fp.read()
When you are done, you close the pipe like a file:

>>> stat = fp.close()
>>> print(stat)
None

The return value is the final status of tise processNone means that it ended normally (with no
errors).

A common use of pipes is to read a compressed file incremgntiadit is, without uncompressing
the whole thing at once. The following function takes the pavha compressed file as a parameter
and returns a pipe that usgs1zip to decompress the contents:

def open_gunzip(filename):
cmd = ' gunzip -C
fp = os.popen(cmd)
return fp

+ filename

If you read lines fronip one at a time, you never have to store the uncompressed filerimony or
on disk.

14.9 Writing modules

Any file that contains Python code can be imported as a modhaleexample, suppose you have a
file namedwvc.py with the following code:

def linecount(filename):
count = 0
for line in open(filename):
count += 1
return count

print(linecount("we.py ')

If you run this program, it reads itself and prints the numtifdines in the file, which is 7. You can
also import it like this:

>>> import wc
7

Now you have a module objeat:

>>> print(wc)
<module ' wc

from ' wc.py ' >

That provides a function calldiiecount

144 Chapter 14. Files

>>> we.linecount(' we.py ')
7

So that’s how you write modules in Python.

The only problem with this example is that when you import tinedule it executes the test code
at the bottom. Normally when you import a module, it defines finctions but it doesn’t execute
them.

Programs that will be imported as modules often use thevitig idiom:

if _name__ == ' _ main__
print(linecount("we.py ')

__name__is a built-in variable that is set when the program startghéfprogram is running as a
script,__name__ has the value_main__; in that case, the test code is executed. Otherwise, if the
module is being imported, the test code is skipped.

Exercise 14.4Type this example into a file named.py and runit as a script. Then run the Python
interpreter andmport we . What is the value of name__ when the module is being imported?

Warning: If you import a module that has already been imghifthon does nothing. It does not
re-read the file, even if it has changed.

If you want to reload a module, you can use the built-in fumtteload , but it can be tricky, so the
safest thing to do is restart the interpreter and then intpertnodule again.

14.10 Debugging

When you are reading and writing files, you might run into peofs with whitespace. These errors
can be hard to debug because spaces, tabs and newlinesragdlynavisible:

>>> s ="12t3\n4 '
>>> print(s)

12 3

4

The built-in functionrepr can help. It takes any object as an argument and returnsg sépre-
sentation of the object. For strings, it represents whiesgharacters with backslash sequences:

>>> print(repr(s))
"12t3n4

This can be helpful for debugging.

One other problem you might run into is that different systerse different characters to indicate the
end of a line. Some systems use a newline, represénteédthers use a return character, represented
\r . Some use both. If you move files between different systemesgetinconsistencies might cause
problems.

For most systems, there are applications to convert fronfameat to another. You can find them
(and read more about this issuepédipedia.org/wiki/Newline . Or, of course, you could write
one yourself.

14.11. Glossary 145

14.11 Glossary

persistent: Pertaining to a program that runs indefinitely and keepsadtlsome of its data in
permanent storage.

format operator: An operator% that takes a format string and a tuple and generates a #tidng
includes the elements of the tuple formatted as specifietidjormat string.

format string: A string, used with the format operator, that contains fdrseguences.

format sequence: A sequence of characters in a format string, ke that specifies how a value
should be formatted.

text file: A sequence of characters stored in permanent storage liaedadhive.

directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file syste

catch: To prevent an exception from terminating a program usindrtheandexcept statements.

database: A file whose contents are organized like a dictionary withskigat correspond to values.

14.12 Exercises

Exercise 14.5Theurllib.request module provides methods for manipulating URLs and down-
loading information from the web. The following example ddaads and prints a secret message
from thinkpython.com

import urllib.request

conn = urllib.request.urlopen(' http://thinkpython.com/secret.html| ")
for line in conn.fp:
print(line.strip())

Run this code and follow the instructions you see there.

Exercise 14.61n a large collection of MP3 files, there may be more than omy o the same song,
stored in different directories or with different file nam@$e goal of this exercise is to search for
these duplicates.

1. Write a program that searches a directory and all of itsisabtories, recursively, and returns
a list of complete paths for all files with a given suffix (likep3). Hint: os.path provides
several useful functions for manipulating file and path name

2. To recognize duplicates, you can use a hash function #eaisrthe file and generates a
short summary of the contents. For example, MD5 (MessagedDialgorithm 5) takes an
arbitrarily-long “message” and returns a 128-bit “checksuThe probability is very small
that two files with different contents will return the samecksum.

You can read about MD5 atikipedia.org/wiki/Md5 . On a Unix system you can use the
programmd5sumand a pipe to compute checksums from Python.

146 Chapter 14. Files

Exercise 14.7The Internet Movie Database (IMDDb) is an online collectidrirdormation about
movies. Their database is available in plain text formatt sareasonably easy to read from Python.
For this exercise, the files you need acwrs.list.gz andactresses.list.gz ; you can down-
load them fromwww.imdb.com/interfaces#plain

I have written a program that parses these files and splits thi#® actor names, movie titles, etc.
You can download it fronthinkpython.com/code/imdb.py

If you runimdb.py as a script, it readasctors.list.gz and prints one actor-movie pair per line.
Or, if you import imdb you can use the functioprocess _file to, well, process the file. The
arguments are a filename, a function object and an optiomabeuof lines to process. Here is an
example:

import imdb

def print_info(actor, date, title, role):
print(actor, date, title, role)

imdb.process_file(" actors.list.gz ', print_info)

When you calbrocess_file , it opensfilename , reads the contents, and cait&t_info once
for each line in the file.print_info takes an actor, date, movie title and role as arguments and
prints them.

1. Write a program that readstors.list.gz andactresses.list.gz and useshelve to
build a database that maps from each actor to a list of hisrdilines.

2. Two actors are “costars” if they have been in at least onéertogether. Process the database
you built in the previous step and build a second databasertaps from each actor to a list
of his or her costars.

3. Write a program that can play the “Six Degrees of Kevin Bgtehich you can read about
atwikipedia.org/wiki/Six_Degrees_of Kevin_Bacon . This problem is challenging be-
cause it requires you to find the shortest path in a graph. ‘#ouread about shortest path
algorithms atvikipedia.org/wiki/Shortest_path_problem

Chapter 15

Classes and objects

15.1 User-defined types

We have used many of Python’s built-in types; now we are geindefine a new type. As an
example, we will create a type call@dint that represents a point in two-dimensional space.

In mathematical notation, points are often written in p#neses with a comma separating the coor-
dinates. For exampl€0,0) represents the origin, arfd,y) represents the pointunits to the right
andy units up from the origin.

There are several ways we might represent points in Python:

» We could store the coordinates separately in two variakleady.
« We could store the coordinates as elements in a list or tuple

» We could create a new type to represent points as objects.

Creating a new type is (a little) more complicated than thepbptions, but it has advantages that
will be apparent soon.

A user-defined type is also calleatkass A class definition looks like this:

class Point(object):
""represents a point in 2-D space

This header indicates that the new class Poiat , which is a kind ofobject , which is a built-in
type.

The body is a docstring that explains what the class is fou &@n define variables and functions
inside a class definition, but we will get back to that later.

Defining a class namdebint creates a class object.

>>> print(Point)
<class ' __main__.Point '>

148 Chapter 15. Classes and objects

BecauséPoint is defined at the top level, its “full name” is main__.Point

The class object is like a factory for creating objects. Teate a Point, you caloint as if it were
a function.

>>> plank = Point()
>>> print(blank)
<__main__.Point object at 0xb7e9d3ac>

The return value is a reference to a Point object, which wiggase blank . Creating a new object
is calledinstantiation, and the object is amstanceof the class.

When you print an instance, Python tells you what class ibiogd to and where it is stored in
memory (the prefiXx means that the following number is in hexadecimal).

15.2 Attributes

You can assign values to an instance using dot notation:

>>> plank.x = 3.0
>>> blanky = 4.0

This syntax is similar to the syntax for selecting a variaioten a module, such asath.pi or
string.whitespace . In this case, though, we are assigning values to named etsio&an object.
These elements are callattributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on thstfsyllable, as opposed to “a-TRIB-
ute,” which is a verb.

The following diagram shows the result of these assignménssate diagram that shows an object
and its attributes is called abject diagram:

Point

olank —=| x —= 3.0

y —= 4.0

The variableblank refers to a Point object, which contains two attributes.Heattribute refers to a
floating-point number.

You can read the value of an attribute using the same syntax:

>>> print(blank.y)
4.0

>>> x = hlank.x
>>> print(x)

3.0

The expressioblank.x means, “Go to the objettank refers to and get the value ®f’ In this
case, we assign that value to a variable namethere is no conflict between the variakland the
attributex.

You can use dot notation as part of any expression. For exampl

15.3. Rectangles 149

>>> print(' (%g, %g) ' % (blank.x, blank.y))
@ 4

>>> distance = math.sgrt(blank.x**2 + blank.y**2)
>>> print(distance)

5.0

You can pass an instance as an argument in the usual way. &opéx
def print_point(p):
print(" (%g, %g) " % (p-X, p.y))

print_point takes a point as an argument and displays it in mathematitation. To invoke it,
you can pasblank as an argument:

>>> print_point(blank)
(3.0, 4.0)

Inside the functionp is an alias foblank , so if the function modifiep, blank changes.

Exercise 15.1Write a function calledlistance that takes two Points as arguments and returns the
distance between them.

15.3 Rectangles

Sometimes it is obvious what the attributes of an object kshio, but other times you have to make
decisions. For example, imagine you are designing a clasptesent rectangles. What attributes
would you use to specify the location and size of a rectangta?can ignore angle; to keep things
simple, assume that the rectangle is either vertical ozbatal.

There are at least two possibilities:
* You could specify one corner of the rectangle (or the céntiee width, and the height.
* You could specify two opposing corners.

At this pointit is hard to say whether either is better thamdther, so we’ll implement the first one,
just as an example.

Here is the class definition:

class Rectangle(object):
""represent a rectangle.
attributes: width, height, corner.

mm

The docstring lists the attributesiidth andheight are numbersgorner is a Point object that
specifies the lower-left corner.

To representarectangle, you have to instantiate a Reetabggct and assign values to the attributes:

box = Rectangle()
box.width = 100.0
box.height = 200.0
box.corner = Point()
box.corner.x = 0.0
box.cornery = 0.0

150 Chapter 15. Classes and objects

The expressiohox.corner.x ~ means, “Go to the objebbx refers to and select the attribute named
corner ; then go to that object and select the attribute naried

The figure shows the state of this object:

Rectangle
box —=| width —= 100.0 Point
corner y ~ 00

An object that is an attribute of another objecembedded

15.4 Instances as return values

Functions can return instances. For examipid, center ~ takes &Rectangle as an argument and
returns aPoint that contains the coordinates of the center ofRbetangle :

def find_center(box):
p = Point()
p.x = box.corner.x + box.width/2.0
p.y = box.conery + box.height/2.0
return p

Here is an example that pas$eg as an argument and assigns the resulting Poicdrtier :

>>> center = find_center(box)
>>> print_point(center)
(50.0, 100.0)

15.5 Obijects are mutable

You can change the state of an object by making an assignmengtof its attributes. For example,
to change the size of a rectangle without changing its psitiou can modify the values afdth
andheight :

box.width = box.width + 50
box.height = box.width + 100

You can also write functions that modify objects. For exaengbw_rectangle takes a Rectangle
object and two numbergwidth anddheight , and adds the numbers to the width and height of the
rectangle:

def grow_rectangle(rect, dwidth, dheight) :
rectwidth += dwidth
rect.height += dheight

Here is an example that demonstrates the effect:

15.6. Copying 151

>>> print(box.width)

100.0

>>> print(box.height)

200.0

>>> grow_rectangle(box, 50, 100)
>>> print(box.width)

150.0

>>> print(box.height)

300.0

Inside the functionrect is an alias fobox, so if the function modifiegect , box changes.

Exercise 15.2Write a function namedhove_rectangle that takes a Rectangle and two numbers
nameddx anddy. It should change the location of the rectangle by addintp thex coordinate of
corner and addingly to they coordinate otorner .

15.6 Copying

Aliasing can make a program difficult to read because chaingase place might have unexpected
effects in another place. Itis hard to keep track of all thealdes that might refer to a given object.

Copying an object is often an alternative to aliasing. Toyyy module contains a function called
copy that can duplicate any object:

>>> pl = Point()
>>> plx = 3.0
>>> ply = 4.0

>>> import copy
>>> p2 = copy.copy(pl)

pl andp2 contain the same data, but they are not the same Point.

>>> print_point(pl)
(3.0, 4.0

>>> print_point(p2)
(3.0, 4.0

>>> pl is p2
False

>>> pl == p2
False

Theis operator indicates thatl andp2 are not the same object, which is what we expected. But
you might have expectest to yield True because these points contain the same data. In that case,
you will be disappointed to learn that for instances, theadifoehavior of the= operator is the
same as thés operator; it checks object identity, not object equivakend@his behavior can be
changed—we’ll see how later.

If you usecopy.copy to duplicate a Rectangle, you will find that it copies the Ragte object but
not the embedded Point.

152 Chapter 15. Classes and objects

>>> hox2 = copy.copy(box)
>>> hox2 is box

False

>>> hox2.corner is box.corner
True

Here is what the object diagram looks like:

box——= width —= 100.0 100.0 =— width [=—box2
height —= 200.0 x ~ 0.0 200.0 =— height
corner y ~ 00 corner

This operation is called shallow copybecause it copies the object and any references it contains,
but not the embedded objects.

For most applications, this is not what you want. In this egleminvokinggrow_rectangle on one
of the Rectangles would not affect the other, but invokinge_rectangle on either would affect
both! This behavior is confusing and error-prone.

Fortunately, theopy module contains a method nameéskpcopy that copies not only the object
but also the objects it refers to, and the objehty refer to, and so on. You will not be surprised to
learn that this operation is callecdaep copy

>>> hox3 = copy.deepcopy(box)
>>> phox3 is box

False

>>> hox3.corner is box.corner
False

box3 andbox are completely separate objects.

Exercise 15.3Write a version ofmove_rectangle that creates and returns a new Rectangle instead
of modifying the old one.

15.7 Debugging

When you start working with objects, you are likely to enctaursome new exceptions. If you try
to access an attribute that doesn’t exist, you géitaibuteError

>>> p = Point()
>>> print(p.z)
AttributeError: Point instance has no attribute

If you are not sure what type an object is, you can ask:

>>> type(p)
<class ' __main__.Point '>

If you are not sure whether an object has a particular at&jbgou can use the built-in function
hasattr

15.8. Glossary 153

>>> hasattr(p, "x")
True
>>> hasattr(p, 'z")
False

The first argument can be any object; the second argumerstiigg that contains the name of the
attribute.

15.8 Glossary

class: A user-defined type. A class definition creates a new classcbj

class object: An object that contains information about a user-defined tyfne class object can be
used to create instances of the type.

instance: An object that belongs to a class.
attribute: One of the named values associated with an object.
embedded (object): An object that is stored as an attribute of another object.

shallow copy: To copy the contents of an object, including any referenoemntbedded objects;
implemented by theopy function in thecopy module.

deep copy: To copy the contents of an object as well as any embeddedtsppud any objects
embedded in them, and so on; implemented byddepcopy function in thecopy module.

object diagram: A diagram that shows objects, their attributes, and theegatd the attributes.

15.9 Exercises

Exercise 15.4World.py , which is part of Swampy (see Chapter 4), contains a classitiefi for a
user-defined type callédlorld . You can import it like this:

from World import World

This version of thémport statement imports th&orld class from théVorld module. The follow-
ing code creates a World object and callsti@nloop method, which waits for the user.

world = World()
world.mainloop()

A window should appear with a title bar and an empty square.willeuse this window to draw
Points, Rectangles and other shapes. Add the following logfore callingnainloop and run the
program again.

canvas = world.ca(width=500, height=500, background= " white ")
bbox = [[-150,-100], [150, 100]]
canvas.rectangle(bbox, outline= " black ', width=2, fill= ' greend ')

154 Chapter 15. Classes and objects

You should see a green rectangle with a black outline. Thdifiescreates a Canvas, which appears
in the window as a white square. The Canvas object providéisads likerectangle for drawing
various shapes.

bbox is a list of lists that represents the “bounding box” of thetaegle. The first pair of coordinates
is the lower-left corner of the rectangle; the second painésupper-right corner.

You can draw a circle like this:
canvas.circle([-25,0], 70, outline=None, fill= "red')

The first parameter is the coordinate pair for the center efcilcle; the second parameter is the
radius.

If you add this line to the program, the result should resentiid national flag of Bangladesh (see
wikipedia.org/wiki/Gallery_of_sovereign-state_flags).

1. Write a function callediraw_rectangle that takes a Canvas and a Rectangle as arguments
and draws a representation of the Rectangle on the Canvas.

2. Add an attribute namexlor to your Rectangle objects and modifaw _rectangle so that
it uses the color attribute as the fill color.

3. Write a function calledraw_point that takes a Canvas and a Point as arguments and draws
a representation of the Point on the Canvas.

4. Define anew class called Circle with appropriate attdbuaind instantiate a few Circle objects.
Write a function calledlraw_circle that draws circles on the canvas.

5. Write a program that draws the national flag of the CzechuBkp Hint: you can draw a
polygon like this:

points = [[-150,-100], [150, 100], [150, -100]]

canvas.polygon(points, fill= " blue ')

| have written a small program that lists the available cgloyou can download it from
thinkpython.com/code/color_list.py

Chapter 16

Classes and functions

16.1 Time

As another example of a user-defined type, we’'ll define a dakbsdTime that records the time of
day. The class definition looks like this:

class Time(object):
""represents the time of day.
attributes: hour, minute, second

We can create a neWime object and assign attributes for hours, minutes, and sacond

time = Time()
time.hour = 11
time.minute = 59
time.second = 30

The state diagram for thBme object looks like this:

Time

time —= hour — 11
minute —= 59

second —= 30

Exercise 16.1Write a function callegrint_time that takes a Time object and prints it in the form
hour:minute:second . Hint: the format sequenc¢eét.2d' prints an integer using at least two digits,
including a leading zero if necessary.

Exercise 16.2Write a boolean function calleid_after that takes two Time objectt], andt2 ,
and returngrue if t1 followst2 chronologically andralse otherwise. Challenge: don’t use #n
statement.

156 Chapter 16. Classes and functions

16.2 Pure functions

In the next few sections, we’ll write two functions that adishé values. They demonstrate two
kinds of functions: pure functions and modifiers. They alsmndnstrate a development plan Il
call prototype and patch, which is a way of tackling a complex problem by starting watimple
prototype and incrementally dealing with the complicasion

Here is a simple prototype afld_time :

def add_time(t1, t2):
sum = Time()
sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second
return sum

The function creates a nelime object, initializes its attributes, and returns a refeestacthe new
object. This is called @ure function because it does not modify any of the objects passed to it as
arguments and it has no effect, like displaying a value dirggtiser input, other than returning a
value.

To test this function, I'll create two Time objectstart contains the start time of a movie, like
Monty Python and the Holy Grail, andduration ~ contains the run time of the movie, which is one
hour 35 minutes.

add_time figures out when the movie will be done.

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 0

>>> duration = Time()
>>> duration.hour = 1
>>> duration.minute = 35
>>> duration.second = 0

>>> done = add time(start, duration)
>>> print_time(done)
10:80:00

The result,10:80:00 might not be what you were hoping for. The problem is thatfimietion does
not deal with cases where the number of seconds or minutesugdith more than sixty. When that
happens, we have to “carry” the extra seconds into the micaltenn or the extra minutes into the
hour column.

Here’s an improved version:

def add_time(t1, t2):
sum = Time()
sum.hour = tl.hour + t2.hour
sum.minute = tl.minute + t2.minute
sum.second = tl.second + t2.second

16.3. Modifiers 157

if sum.second >= 60:
sum.second -= 60
sum.minute += 1

if sum.minute >= 60:
sum.minute -= 60
sum.hour += 1

return sum

Although this function is correct, it is starting to get bilye will see a shorter alternative later.

16.3 Modifiers

Sometimes it is useful for a function to modify the objectgeéts as parameters. In that case, the
changes are visible to the caller. Functions that work ttaig are callednodifiers.

increment , which adds a given number of seconds fGrae object, can be written naturally as a
modifier. Here is a rough draft:

def increment(time, seconds):
time.second += seconds

if time.second >= 60:
time.second -= 60
time.minute += 1

if time.minute >= 60:
time.minute -= 60
time.hour += 1

The first line performs the basic operation; the remaindaldeith the special cases we saw before.
Is this function correct? What happens if the paramsteands is much greater than sixty?

In that case, it is not enough to carry once; we have to keamdbuntil time.second is less than
sixty. One solution is to replace tlife statements witlwhile statements. That would make the
function correct, but not very efficient.

Exercise 16.3Write a correct version aficrement that doesn’t contain any loops.

Anything that can be done with modifiers can also be done witte functions. In fact, some
programming languages only allow pure functions. Ther@mesevidence that programs that use
pure functions are faster to develop and less error-proae fiiograms that use modifiers. But
modifiers are convenient at times, and functional programd to be less efficient.

In general, | recommend that you write pure functions whenéis reasonable and resort to modi-
fiers only if there is a compelling advantage. This approaightbe called dunctional program-
ming style.

Exercise 16.4Write a “pure” version ofincrement that creates and returns a new Time object
rather than modifying the parameter.

158 Chapter 16. Classes and functions

16.4 Prototyping versus planning

The development plan | am demonstrating is called “protetspd patch.” For each function, |
wrote a prototype that performed the basic calculation hed tested it, patching errors along the
way.

This approach can be effective, especially if you don’t yeteha deep understanding of the problem.
But incremental corrections can generate code that is @ssacdly complicated—since it deals with
many special cases—and unreliable—since it is hard to khgau have found all the errors.

An alternative iplanned developmentin which high-level insight into the problem can make the
programming much easier. In this case, the insight is thaha ©bject is really a three-digit number
in base 60 (sewikipedia.org/wiki/Sexagesimal ! Thesecond attribute is the “ones column,”
theminute attribute is the “sixties column,” and theur attribute is the “thirty-six hundreds col-
umn.”

When we wroteadd time andincrement , we were effectively doing addition in base 60, which is
why we had to carry from one column to the next.

This observation suggests another approach to the whatdgmne—we can convert Time objects to
integers and take advantage of the fact that the computevhow to do integer arithmetic.

Here is a function that converts Times to integers:

def time_to_int(time):
minutes = time.hour * 60 + time.minute
seconds = minutes * 60 + time.second
return seconds

And here is the function that converts integers to Timesalt¢itatdivmod divides the first argument
by the second and returns the quotient and remainder asej.tupl

def int_to_time(seconds):
time = Time()
minutes, time.second = divmod(seconds, 60)
time.hour, time.minute = divmod(minutes, 60)
return time

You might have to think a bit, and run some tests, to convirmarself that these functions are
correct. One way to test them is to check tti@ae_to_int(int_to_time(x)) == x for many
values ofx. This is an example of a consistency check.

Once you are convinced they are correct, you can use therwtagadd_time :

def add_time(t1, t2):
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

This version is shorter than the original, and easier tdyeri

Exercise 16.5Rewriteincrement usingtime to_int andint_to_time

In some ways, converting from base 60 to base 10 and backdethidran just dealing with times.
Base conversion is more abstract; our intuition for dealiity time values is better.

16.5. Debugging 159

But if we have the insight to treat times as base 60 humbersmake the investment of writing the
conversion functiondifne to_int andint_to_time), we get a program that is shorter, easier to
read and debug, and more reliable.

Itis also easier to add features later. For example, imagyib&racting two Times to find the duration
between them. The naive approach would be to implementagitain with borrowing. Using the
conversion functions would be easier and more likely to bresto.

Ironically, sometimes making a problem harder (or more gaheakes it easier (because there are
fewer special cases and fewer opportunities for error).

16.5 Debugging

A Time object is well-formed if the values ofinutes andseconds are between 0 and 60 (including
0 but not 60) and ifiours is positive.hours andminutes should be integral values, but we might
allow seconds to have a fraction part.

Requirements like these are calledariants because they should always be true. To put it a differ-
ent way, if they are not true, then something has gone wrong.

Writing code to check your invariants can help you deteairsrand find their causes. For example,
you might have a function likealid_time that takes a Time object and retuiffedse if it violates
an invariant:

def valid_time(time):
if time.hours < 0 or time.minutes < 0 or time.seconds < O:
return False
if time.minutes >= 60 or time.seconds >= 60:;
return False
return True

Then at the beginning of each function you could check tharagnts to make sure they are valid:

def add_time(t1, t2):
if not valid_time(tl) or not valid_time(t2):
raise ValueError, "invalid Time object in add time
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

Or you could use amssert statement, which checks a given invariant and raises arpégoef it
fails:

def add_time(t1, t2):
assert valid_time(t1) and valid_time(t2)
seconds = time_to_int(tl) + time_to_int(t2)
return int_to_time(seconds)

assert statements are useful because they distinguish code thlstwdith normal conditions from
code that checks for errors.

160 Chapter 16. Classes and functions

16.6 Glossary

prototype and patch: A development plan that involves writing a rough draft of agmam, testing,
and correcting errors as they are found.

planned development: A development plan that involves high-level insight inte froblem and
more planning than incremental development or prototypeldpment.

pure function: A function that does not modify any of the objects it receimesarguments. Most
pure functions are fruitful.

modifier: A function that changes one or more of the objects it receagegrguments. Most modi-
fiers are fruitless.

functional programming style: A style of program design in which the majority of functiornre a
pure.

invariant: A condition that should always be true during the executioa jprogram.

16.7 Exercises

Exercise 16.6Write a function callednul_time that takes a Time object and a number and returns
a new Time object that contains the product of the original@and the number.

Then usemul_time to write a function that takes a Time object that represdmdinishing time
in a race, and a number that represents the distance, amdsetlime object that represents the
average pace (time per mile).

Exercise 16.7Write a class definition for a Date object that has attribdegs month andyear .
Write a function calledhcrement_date thattakes a Date objediate and an integen, and returns
a new Date object that represents the dalays aftedate . Hint: “Thirty days hath September...”
Challenge: does your function deal with leap years cory@c8eewikipedia.org/wiki/Leap_

year .

Exercise 16.8Thedatetime module provideslate andtime objects that are similar to the Date
and Time objects in this chapter, but they provide a rich $ehethods and operators. Read the
documentation atocs.python.org/lib/datetime-date.html

1. Use thadatetime module to write a program that gets the current date andspttiet day of
the week.

2. Write a program that takes a birthday as input and prirgsufer’s age and the number of
days, hours, minutes and seconds until their next birthday.

Chapter 17

Classes and methods

17.1 Object-oriented features

Python is arobject-oriented programming language which means that it provides features that
support object-oriented programming.

It is not easy to define object-oriented programming, but exetalready seen some of its charac-
teristics:

« Programs are made up of object definitions and function iiefis, and most of the compu-
tation is expressed in terms of operations on objects.

» Each object definition corresponds to some object or cdringpe real world, and the func-
tions that operate on that object correspond to the waysaeddtl objects interact.

For example, th@ime class defined in Chapter 16 corresponds to the way peopledréoe time
of day, and the functions we defined correspond to the kindkio§s people do with times. Sim-
ilarly, the Point andRectangle classes correspond to the mathematical concepts of a pwra a
rectangle.

So far, we have not taken advantage of the features Pytharidpsoto support object-oriented
programming. These features are not strictly necessargt afithem provide alternative syntax for
things we have already done. But in many cases, the alteeriatinore concise and more accurately
conveys the structure of the program.

For example, in th@ime program, there is no obvious connection between the cldsstam and
the function definitions that follow. With some examinatidnis apparent that every function takes
at least on@ime object as an argument.

This observation is the motivation fonethods a method is a function that is associated with a
particular class. We have seen methods for strings, ligt8pdaries and tuples. In this chapter, we
will define methods for user-defined types.

Methods are semantically the same as functions, but thersvarsyntactic differences:

» Methods are defined inside a class definition in order to nth&eelationship between the
class and the method explicit.

162 Chapter 17. Classes and methods

« The syntax for invoking a method is different from the syiar calling a function.

In the next few sections, we will take the functions from tlieyious two chapters and transform
them into methods. This transformation is purely mechdnyeau can do it simply by following a
sequence of steps. If you are comfortable converting fromform to another, you will be able to
choose the best form for whatever you are doing.

17.2 Printing objects

In Chapter 16, we defined a class nanféde and in Exercise 16.1, you wrote a function named
print_time

class Time(object):
""represents the time of day.
attributes: hour, minute, second™"
def print_time(time):
print(' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second))

To call this function, you have to pasdime object as an argument:

>>> start = Time()
>>> start.hour = 9
>>> start.minute = 45
>>> start.second = 00
>>> print_time(start)
09:45:00

To makeprint_time a method, all we have to do is move the function definitiondaghe class
definition. Notice the change in indentation.

class Time(object):
def print_time(time):
print(' %.2d:%.2d:%.2d ' % (time.hour, time.minute, time.second))

Now there are two ways to cgitint_time . The first (and less common) way is to use function
syntax:

>>> Time.print_time(start)
09:45:00

In this use of dot notatiorfjme is the name of the class, apiht time is the name of the method.
start is passed as a parameter.

The second (and more concise) way is to use method syntax:

>>> start.print_time()
09:45:00

In this use of dot notatiorgrint_time is the name of the method (again), atalt is the object
the method is invoked on, which is called thebject Just as the subject of a sentence is what the
sentence is about, the subject of a method invocation is thbahethod is about.

17.3. Another example 163

Inside the method, the subject is assigned to the first paesinse in this casstart is assigned to
time .

By convention, the first parameter of a method is cadkdfd , so it would be more common to write
print_time like this:

class Time(object):
def print_time(self):
print(' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second))

The reason for this convention is an implicit metaphor:

« The syntax for a function calprint_time(start) , suggests that the function is the active
agent. It says something like, “Heyint_time ! Here’s an object for you to print.”

* In object-oriented programming, the objects are the adiyents. A method invocation like
start.print_time() says “Heystart ! Please print yourself.”

This change in perspective might be more polite, but it isoheious that it is useful. In the examples
we have seen so far, it may not be. But sometimes shiftingoresbility from the functions onto
the objects makes it possible to write more versatile fumstj and makes it easier to maintain and
reuse code.

Exercise 17.1Rewritetime_to_int (from Section 16.4) as a method. Itis probably not approgria
to rewriteint_to_time as a method; it's not clear what object you would invoke it on!

17.3 Another example

Here’s a version oicrement (from Section 16.3) rewritten as a method:

inside class Time:

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

This version assumes thiabe to_int is written as a method, as in Exercise 17.1. Also, note that
it is a pure function, not a modifier.

Here’s how you would invok@écrement

>>> start.print_time()

09:45:00

>>> end = start.increment(1337)
>>> end.print_time()

10:07:17

The subjectstart , gets assigned to the first parameself, . The argumentl337, gets assigned
to the second parametseconds .

This mechanism can be confusing, especially if you make eor.eFor example, if you invoke
increment with two arguments, you get:

164 Chapter 17. Classes and methods

>>> end = start.increment(1337, 460)
TypeError: increment() takes exactly 2 arguments (3 given)

The error message is initially confusing, because theremlsetwo arguments in parentheses. But
the subject is also considered an argument, so all togdtaes three.

17.4 A more complicated example

is_after (from Exercise 16.2) is slightly more complicated becausakies two Time objects as
parameters. In this case it is conventional to name the firstpeteself and the second parameter
other :

inside class Time:

def is_after(self, other):
return self.time_to_int() > other.time_to_int()

To use this method, you have to invoke it on one object andthassther as an argument:

>>> end.is_after(start)
True

One nice thing about this syntax is that it almost reads likglish: “end is after start?”

17.5 The init method

The init method (short for “initialization”) is a special ttwd that gets invoked when an object is
instantiated. Its fullnameis init__ (two underscore characters, followediby , and then two
more underscores). An init method for thieme class might look like this:

inside class Time:

def __init_ (self, hour=0, minute=0, second=0):
self.hour = hour
self.minute = minute
self.second = second

Itis common for the parameters ofinit__ to have the same names as the attributes. The statement
self.hour = hour

stores the value of the parameltear as an attribute ofelf .

The parameters are optional, so if you Gadhe with no arguments, you get the default values.

>>> time = Time()
>>> time.print_time()
00:00:00

If you provide one argument, it overridbeur :

17.6. The_str __method 165

>>> time = Time (9)
>>> time.print_time()
09:00:00

If you provide two arguments, they overrileur andminute .

>>> time = Time(9, 45)
>>> time.print_time()
09:45:00

And if you provide three arguments, they override all threfadlt values.

Exercise 17.2Write an init method for th&oint class that takes andy as optional parameters
and assigns them to the corresponding attributes.

17.6 The_str __ method

__str__is aspecial method, like init__ , that is supposed to return a string representation of an
object.

For example, here isgr method for Time objects:

inside class Time:

def _ str_ (self):
return ' %.2d:%.2d:%.2d ' % (self.hour, self.minute, self.second)

When youprint an object, Python invokes tis&¢ method:

>>> time = Time(9, 45)
>>> print(time)

09:45:00
When | write a new class, | almost always start by writingnit_, which makes it easier to
instantiate objects, andstr__ , which is useful for debugging.

Exercise 17.3Write astr method for thePoint class. Create a Point object and print it.

17.7 Operator overloading

By defining other special methods, you can specify the behafioperators on user-defined types.
For example, if you define a method nameddd _ for theTime class, you can use theoperator
on Time objects.

Here is what the definition might look like:

inside class Time:

def __add_ (self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

166 Chapter 17. Classes and methods

And here is how you could use it:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print(start + duration)
11:20:00

When you apply the operator to Time objects, Python invokesdd__ . When you print the result,
Python invokes_str . So there is quite a lot happening behind the scenes!

Changing the behavior of an operator so that it works withr-dsedéined types is calledperator
overloading. For every operator in Python there is a corresponding apew@thod, like add .
For more details, se#ocs.python.org/ref/specialnames.html

Exercise 17.4Write anadd method for the Point class.

17.8 Type-based dispatch

In the previous section we added two Time objects, but yow mlight want to add an integer to a
Time object. The following is a version of add__ that checks the type ofther and invokes either
add_time orincrement

inside class Time:

def __add__(self, other):
if isinstance(other, Time):
return self.add_time(other)
else:
return self.increment(other)

def add_time(self, other):
seconds = self.time_to_int() + other.time_to_int()
return int_to_time(seconds)

def increment(self, seconds):
seconds += self.time_to_int()
return int_to_time(seconds)

The built-in functionisinstance takes a value and a class object, and retlirnes if the value is
an instance of the class.

If other is a Time object, add invokesadd time . Otherwise it assumes that the parameter
is a number and invokescrement . This operation is called type-based dispatchbecause it
dispatches the computation to different methods basedeotyie of the arguments.

Here are examples that use theperator with different types:

>>> start = Time(9, 45)
>>> duration = Time(1, 35)
>>> print(start + duration)
11:20:00

>>> print(start + 1337)
10:07:17

17.9. Polymorphism 167

Unfortunately, this implementation of addition is not conrative. If the integer is the first operand,
you get

>>> print(1337 + start)
TypeError: unsupported operand type(s) for +:

int and ' instance

The problem is, instead of asking the Time object to add segan, Python is asking an integer to
add a Time object, and it doesn’t know how to do that. But tiieeeeclever solution for this problem:
the special method radd__ , which stands for “right-side add.” This method is invokedem a
Time object appears on the right side of theperator. Here’s the definition:

inside class Time:

def _ radd__ (self, other):
return self.__add__(other)

And here’s how it's used:

>>> print(1337 + start)
10:07:17

Exercise 17.5Write anadd method for Points that works with either a Point object or@ddu

« If the second operand is a Point, the method should retuaweRoint whose coordinate is
the sum of thex coordinates of the operands, and likewise foryleeordinates.

« If the second operand is a tuple, the method should add steefement of the tuple to the
coordinate and the second element toytleeordinate, and return a new Point with the result.

17.9 Polymorphism

Type-based dispatch is useful when it is necessary, but(fately) it is not always necessary. Often
you can avoid it by writing functions that work correctly falguments with different types.

Many of the functions we wrote for strings will actually wdide any kind of sequence. For example,
in Section 11.1 we usddstogram to count the number of times each letter appears in a word.

def histogram(s):

d = dict()
for ¢ in s:
if ¢ not in d:
dic] =1
else:
dic] = d[c]+1
return d

This function also works for lists, tuples, and even dicéines, as long as the elementssoére
hashable, so they can be used as keyks in

>>> t = [' spam
>>> histogram(t)
{* bacon' : 1,

, 'egg', 'spam', 'spam', 'bacon', ' spam']

egqg' : 1, ‘'spam': 4}

168 Chapter 17. Classes and methods

Functions that can work with several types are cafletymorphic. Polymorphism can facilitate
code reuse. For example, the built-in functeum, which adds the elements of a sequence, works
as long as the elements of the sequence support addition.

Since Time objects provide add method, they work wittsum:

>>> t1 = Time(7, 43)
>>> 12 = Time(7, 41)
>>> t3 = Time(7, 37)

>>> total = sum([tl, t2, t3])
>>> print(total)
23:01:00

In general, if all of the operations inside a function workiwa given type, then the function works
with that type.

The best kind of polymorphism is the unintentional kind, wehgou discover that a function you
already wrote can be applied to a type you never planned for.

17.10 Debugging

It is legal to add attributes to objects at any point in thecexien of a program, but if you are
a stickler for type theory, it is a dubious practice to havgeots of the same type with different
attribute sets. Itis usually a good idea to initialize albofobjects attributes in the init method.

If you are not sure whether an object has a particular atejbgou can use the built-in function
hasattr (see Section 15.7).

Another way to access the attributes of an object is throlhiglspecial attribute dict _ , which is
a dictionary that maps attribute names (as strings) anesalu

>>> p = Point(3, 4)

>>> print(p.__dict_)

{'y': 4, 'x':3}

For purposes of debugging, you might find it useful to keeg filnction handy:

def print_attributes(obj):

for attr in obj.__ dict_:
print(attr, getattr(obj, attr))

print_attributes traverses the items in the object’s dictionary and printhestribute name and
its corresponding value.

The built-in functiongetattr ~ takes an object and an attribute name (as a string) and setfoen
attribute’s value.

17.11 Glossary

object-oriented language: A language that provides features, such as user-definesesland
method syntax, that facilitate object-oriented prograngni

17.12. Exercises 169

object-oriented programming: A style of programming in which data and the operations that m
nipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is kaebon instances of that class.

subject: The object a method is invoked on.

operator overloading: Changing the behavior of an operator likso it works with a user-defined
type.

type-based dispatch: A programming pattern that checks the type of an operandramdkes dif-
ferent functions for different types.

polymorphic: Pertaining to a function that can work with more than one type

17.12 Exercises

Exercise 17.6This exercise is a cautionary tale about one of the most cameral difficult to find,
errors in Python.

1. Write a definition for a class nam&dngaroo with the following methods:

(@) An__init_ method that initializes an attribute namgmlich_contents to an empty
list.

(b) A method namecdput_in_pouch that takes an object of any type and adds it to
pouch_contents

(c) A _str__ method that returns a string representation of the Kangalject and the
contents of the pouch.

Test your code by creating twangaroo objects, assigning them to variables narkatja
androo , and then addingo to the contents dfanga 's pouch.

2. Downloadhinkpython.com/code/BadKangaroo.py . It contains a solution to the previous
problem with one big, nasty bug. Find and fix the bug.
If you get stuck, you can downlodkinkpython.com/code/GoodKangaroo.py , which ex-
plains the problem and demonstrates a solution.

Exercise 17.7Visual is a Python module that provides 3-D graphics. It isaleays included in a
Python installation, so you might have to install it from ysoftware repository or, if it's not there,
from vpython.org

The following example creates a 3-D space that is 256 unitewiong and high, and sets the
“center” to be the poin{128 128 128). Then it draws a blue sphere.

from visual import *

scene.range = (256, 256, 256)
scene.center = (128, 128, 128)

color = (0.1, 0.1, 0.9) # mostly blue
sphere(pos=scene.center, radius=128, color=color)

170 Chapter 17. Classes and methods

color is an RGB tuple; that is, the elements are Red-Green-Blugddetween 0.0 and 1.0 (see
wikipedia.org/wiki/RGB_color_model).

If you run this code, you should see a window with a black backgd and a blue sphere. If you
drag the middle button up and down, you can zoom in and out. cépualso rotate the scene by
dragging the right button, but with only one sphere in theldiat is hard to tell the difference.

The following loop creates a cube of spheres:

t = range(0, 256, 51)
for x in t:
fory int
for z in t
pos = X, Y, Z
sphere(pos=pos, radius=10, color=color)

1. Putthis code in a script and make sure it works for you.

2. Modify the program so that each sphere in the cube has loe tw@t corresponds to its
position in RGB space. Notice that the coordinates are inghge 0—255, but the RGB tuples

are in the range 0.0-1.0.

3. Downloadthinkpython.com/code/color_list.py and use the functioread_colors to
generate a list of the available colors on your system, tieines and RGB values. For each
named color draw a sphere in the position that correspontsRGB values.

You can see my solution #tinkpython.com/code/color_space.py

Chapter 18

Inheritance

In this chapter we will develop classes to represent plagards, decks of cards, and poker hands.
If you don't play poker, you can read about itvékipedia.org/wiki/Poker , but you don’t have
to; I'll tell you what you need to know for the exercises.

If you are not familiar with Anglo-American playing cardgyiycan read about themwaikipedia.
org/wiki/Playing_cards

18.1 Card objects

There are fifty-two cards in a deck, each of which belongs ® afrfour suits and one of thirteen

ranks. The suits are Spades, Hearts, Diamonds, and Clulbegaending order in bridge). The
ranks are Ace, 2, 3,4,5, 6,7, 8,9, 10, Jack, Queen, and Kiageding on the game that you are
playing, an Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing carslgbvious what the attributes should
be: rank andsuit . It is not as obvious what type the attributes should be. Qrssipility is to
use strings containing words likeSpade' for suits and Queen' for ranks. One problem with this
implementation is that it would not be easy to compare cardgeé¢ which had a higher rank or suit.

An alternative is to use integers émcodethe ranks and suits. In this context, “encode” means that
we are going to define a mapping between numbers and suitefwwedn numbers and ranks. This
kind of encoding is not meant to be a secret (that would ber{gtion”).

For example, this table shows the suits and the correspgiiEger codes:

Spades —
Hearts —
Diamonds +—
Clubs — 0

This code makes it easy to compare cards; because highemsalt to higher numbers, we can
compare suits by comparing their codes.

=N W

The mapping for ranks is fairly obvious; each of the numénaaks maps to the corresponding
integer, and for face cards:

172 Chapter 18. Inheritance

Jack — 11
Queen — 12
King — 13

| am using the— symbol to make it clear that these mappings are not part dPytleon program.
They are part of the program design, but they don’t appediaithpin the code.

The class definition fo€ard looks like this:

class Card(object):
""represents a standard playing card.""
def _init_ (self, suit=0, rank=2):
self.suit = suit
self.rank = rank

As usual, the init method takes an optional parameter fan attbute. The default card is the 2 of
Clubs.

To create a Card, you callard with the suit and rank of the card you want.

queen_of_diamonds = Card(1, 12)

18.2 Class attributes

In order to print Card objects in a way that people can easihdr we need a mapping from the
integer codes to the corresponding ranks and suits. A datasato do that is with lists of strings.
We assign these lists tdass attributes

inside class Card:
suit names = [' Clubs ', ' Diamonds', 'Hearts ', ' Spades']
rank_names = [None, 'Ace', '2', '3, '4, '5, '6, 'T7",
"8, '9, "10", "Jack', 'Queen', 'King"']

def _ str(self):
return ' %s of %s' % (Card.rank_names[self.rank],
Card.suit_names[self.suit])

Variables likesuit_names andrank_names , which are defined inside a class but outside of any
method, are called class attributes because they are atesbuiith the class obje€ard .

This term distinguishes them from variables ligst andrank , which are callednstance at-
tributes because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation.ekample, in_str_ , self is a Card
object, andself.rank s its rank. SimilarlyCard is a class object, an@ard.rank_names is a list
of strings associated with the class.

Every card has its owsuit andrank , but there is only one copy afit_ names andrank_names .

Putting it all together, the expressiGard.rank_names[self.rank] means “use the attributenk
from the objectself as an index into the listank_names from the classCard, and select the
appropriate string.”

18.3. Comparing cards 173

The first element ofank_names is None because there is no card with rank zero. By includioge
as a place-keeper, we get a mapping with the nice propertytthandex 2 maps to the string' ,
and so on. To avoid this tweak, we could have used a dictidnatgad of a list.

With the methods we have so far, we can create and print cards:

>>> cardl = Card(2, 11)
>>> print(cardl)
Jack of Hearts

Here is a diagram that shows tlerd class object and one Card instance:

type list
Card —= suit_names
list
rank_names
Card

cardl —=| suit——=1

rank — 11

Card is a class object, so it has typge . cardl has typeCard . (To save space, | didn’t draw the
contents ofuit names andrank_names).

18.3 Comparing cards

For built-in types, there are relational operatorsx, ==, etc.) that compare values and determine
when one is greater than, less than, or equal to another.geomdefined types, we can override the
behavior of the built-in operators by providing a method edm cmp_.

__cmp__ takes two parametersglf andother , and returns a positive number if the first object is
greater, a negative number if the second object is greateiQ & they are equal to each other.

The correct ordering for cards is not obvious. For exampléchvis better, the 3 of Clubs or the 2
of Diamonds? One has a higher rank, but the other has a highehsorder to compare cards, you
have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, butet tkengs simple, we’ll make the
arbitrary choice that suit is more important, so all of tha&s outrank all of the Diamonds, and so
on.

With that decided, we can write cmp__:

inside class Card:

def __cmp__ (self, other):
check the suits
if self.suit > other.suit: return 1

174 Chapter 18. Inheritance

if self.suit < other.suit: return -1

suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1

ranks are the same... it 's a tie
return 0

You can write this more concisely using tuple comparison:

inside class Card:

def __cmp__ (self, other):
tl = self.suit, self.rank
t2 = other.suit, other.rank
return cmp(tl, t2)

The built-in functioncmp has the same interface as the methocinp__: it takes two values and
returns a positive number if the first is larger, a negativeber if the second is larger, and 0 if they
are equal.

Exercise 18.1Write a__cmp__ method for Time objects. Hint: you can use tuple compariban,
you also might consider using integer subtraction.

18.4 Decks

Now that we have Cards, the next step is to define Decks. Sideelais made up of cards, it is
natural for each Deck to contain a list of cards as an ateibut

The following is a class definition fddeck. The init method creates the attributeds and gener-
ates the standard set of fifty-two cards:

class Deck(object):

def __init_ (self):
self.cards = []
for suit in range(4):
for rank in range(1, 14):
card = Card(suit, rank)
self.cards.append(card)

The easiest way to populate the deck is with a nested loopoiites loop enumerates the suits from
0to 3. The inner loop enumerates the ranks from 1 to 13. Eaddtibn creates a new Card with the
current suit and rank, and appends iséti.cards

18.5 Printing the deck

Hereisa str method forDeck:

18.6. Add, remove, shuffle and sort 175

#inside class Deck:

def _ str_(self):
res =]
for card in self.cards:
res.append(str(card))
return ' \n ' join(res)

This method demonstrates an efficient way to accumulatga &ring: building a list of strings and
then usingoin . The built-in functionstr invokes the str method on each card and returns
the string representation.

Since we invokgoin on a newline character, the cards are separated by newtiees's what the
result looks like:

>>> deck = Deck()
>>> print(deck)
Ace of Clubs

2 of Clubs

3 of Clubs

10 of Spades
Jack of Spades
Queen of Spades
King of Spades

Even though the result appears on 52 lines, it is one longgsthiat contains newlines.

18.6 Add, remove, shuffle and sort

To deal cards, we would like a method that removes a card fhadéeck and returns it. The list
methodpop provides a convenient way to do that:

#inside class Deck:
def pop_card(self):
return self.cards.pop()

Sincepop removes theast card in the list, we are dealing from the bottom of the deckela life
bottom dealing is frowned upénbut in this context it's ok.

To add a card, we can use the list metlappend :

#inside class Deck:

def add_card(self, card):
self.cards.append(card)

A method like this that uses another function without doingcinreal work is sometimes called a
veneer The metaphor comes from woodworking, where it is commoride g thin layer of good
quality wood to the surface of a cheaper piece of wood.

1seewikipedia.org/wiki/Bottom_dealing

176 Chapter 18. Inheritance

In this case we are defining a “thin” method that expressest afieration in terms that are appro-
priate for decks.

As another example, we can write a Deck method nasheffle using the functiorshuffle ~ from
therandom module:

inside class Deck:

def shuffle(self):
random.shuffle(self.cards)

Don't forget to importrandom .

Exercise 18.2Write a Deck method namesdrt that uses the list methadrt to sort the cards in
aDeck. sort usesthe cmp__ method we defined to determine sort order.

18.7 Inheritance

The language feature most often associated with objeettmdl programming imheritance. In-
heritance is the ability to define a new class that is a modifsgdion of an existing class.

Itis called “inheritance” because the new class inhergstiethods of the existing class. Extending
this metaphor, the existing class is called pfaeent and the new class is called thhkild.

As an example, let's say we want a class to represent a “h#rat,is, the set of cards held by one
player. A hand is similar to a deck: both are made up of a seafs; and both require operations
like adding and removing cards.

A hand is also different from a deck; there are operations aetfior hands that don’t make sense
for a deck. For example, in poker we might compare two handg¢owhich one wins. In bridge,
we might compute a score for a hand in order to make a bid.

This relationship between classes—similar, but differeleinds itself to inheritance.

The definition of a child class is like other class definitiomst the name of the parent class appears
in parentheses:

class Hand(Deck):
""represents a hand of playing cards

This definition indicates th&tand inherits fromDeck ; that means we can use methods pikp card
andadd card for Hands as well as Decks.

Hand also inherits_init _ fromDeck, but it doesn’t really do what we want: instead of populating
the hand with 52 new cards, the init method for Hands shodtiéiize cards with an empty list.

If we provide an init method in thHand class, it overrides the one in theck class:

inside class Hand:

def _init_ (self, label= ")
self.cards = []
self.label = label

18.8. Class diagrams 177

So when you create a Hand, Python invokes this init method:

>>> hand = Hand(' new hand')
>>> print(hand.cards)

I

>>> print(hand.label)

new hand

But the other methods are inherited frdrack, so we can uspop_card andadd_card to deal a
card:

>>> deck = Deck()

>>> card = deck.pop_card()
>>> hand.add_card(card)
>>> print(hand)

King of Spades

A natural next step is to encapsulate this code in a methdeboabve cards :

#inside class Deck:

def move_cards(self, hand, num):
for i in range(num):
hand.add_card(self.pop_card())

move_cards takes two arguments, a Hand object and the number of card=sato Itl modifies both
self andhand, and return®one.

In some games, cards are moved from one hand to another,norafttand back to the deck. You
can useanmove_cards for any of these operationself can be either a Deck or a Hand, amahd ,
despite the name, can also bPexk.

Exercise 18.3Write a Deck method calledeal_hands that takes two parameters, the number of
hands and the number of cards per hand, and that creates maholHpects, deals the appropriate
number of cards per hand, and returns a list of Hand objects.

Inheritance is a useful feature. Some programs that woulepetitive without inheritance can be
written more elegantly with it. Inheritance can facilitatede reuse, since you can customize the
behavior of parent classes without having to modify themsdme cases, the inheritance structure
reflects the natural structure of the problem, which makegptibgram easier to understand.

On the other hand, inheritance can make programs difficuéad. When a method is invoked, it is
sometimes not clear where to find its definition. The relecadie may be scattered among several
modules. Also, many of the things that can be done usingiitamee can be done as well or better
without it.

18.8 Class diagrams

So far we have seen stack diagrams, which show the state ofjegon, and object diagrams, which
show the attributes of an object and their values. Theseatiagrepresent a snapshot in the execu-
tion of a program, so they change as the program runs.

178 Chapter 18. Inheritance

They are also highly detailed; for some purposes, too @etai\ class diagram is a more abstract
representation of the structure of a program. Instead ofstgpindividual objects, it shows classes
and the relationships between them.

There are several kinds of relationship between classes:

« Objects in one class might contain references to objecisather class. For example, each
Rectangle contains a reference to a Point, and each Dec&insméferences to many Cards.
This kind of relationship is calleHAS-A, as in, “a Rectangle has a Point.”

« One class might inherit from another. This relationshigalledIS-A, as in, “a Hand is a kind
of a Deck.”

« One class might depend on another in the sense that chamge®iclass would require
changes in the other.

A class diagramis a graphical representation of these relationghif®r example, this diagram
shows the relationships betwe@ard , Deck andHand.

*

Deck Card

I

Hand

The arrow with a hollow triangle head represents an 1S-Ati@iahip; in this case it indicates that
Hand inherits from Deck.

The standard arrow head represents a HAS-A relationshipisitase a Deck has references to Card
objects.

The star {) near the arrow head is multiplicity ; it indicates how many Cards a Deck has. A
multiplicity can be a simple number, lik&, a range, likes..7 or a star, which indicates that a
Deck can have any number of Cards.

A more detailed diagram might show that a Deck actually dostalist of Cards, but built-in types
like list and dict are usually not included in class diagrams

Exercise 18.4ReadTurtleWorld.py , World.py andGui.py and draw a class diagram that shows
the relationships among the classes defined there.

18.9 Debugging

Inheritance can make debugging a challenge because whanwake a method on an object, you
might not know which method will be invoked.

Suppose you are writing a function that works with Hand otsje¥ou would like it to work with
all kinds of Hands, like PokerHands, BridgeHands, etc. Ui yjovoke a method likshuffle , you

2The diagrams | am using here are similar to UML (s&iépedia.org/wiki/Unified_Modeling_Language), with a
few simplifications.

18.10. Glossary 179

might get the one defined Deck, but if any of the subclasses override this method, youtltgat
version instead.

Any time you are unsure about the flow of execution throughrywagram, the simplest solution
is to add print calls at the beginning of the relevant methdti®eck.shuffle prints a message
that says something likBunning Deck.shuffle , then as the program runs it traces the flow of
execution.

As an alternative, you could use this function, which takeslgject and a method name (as a string)
and returns the class that provides the definition of the akth

def find_defining_class(obj, meth_name):
for ty in type(obj).mro():
if meth_name in ty. dict :
return ty

Here’s an example:

>>> hand = Hand()
>>> print(find_defining_class(hand, ' shuffle "))
<class ' Card.Deck ' >

So theshuffle method for this Hand is the one ieck.

find_defining_class uses themro method to get the list of class objects (types) that will be
searched for methods. “MRQO” stands for “method resolutiatea’

Here’s a program design suggestion: whenever you overrighetaod, the interface of the new
method should be the same as the old. It should take the sarmm@i®rs, return the same type,
and obey the same preconditions and postconditions. If Y&y this rule, you will find that any
function designed to work with an instance of a superclassal Deck, will also work with instances
of subclasses like a Hand or PokerHand.

If you violate this rule, your code will collapse like (sojrg house of cards.

18.10 Glossary

encode: To represent one set of values using another set of valueststracting a mapping be-
tween them.

class attribute: An attribute associated with a class object. Class ateihate defined inside a
class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface nother function without doing
much computation.

inheritance: The ability to define a new class that is a modified version ofexipusly defined
class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing class) aldled a “subclass.”

180 Chapter 18. Inheritance

IS-A relationship: The relationship between a child class and its parent class.

HAS-A relationship: The relationship between two classes where instances otlass contain
references to instances of the other.

class diagram: A diagram that shows the classes in a program and the rethiifgmbetween them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relatfop, how many refer-
ences there are to instances of another class.

18.11 Exercises

Exercise 18.5The following are the possible hands in poker, in increasirger of value (and
decreasing order of probability):

pair: two cards with the same rank
two pair: two pairs of cards with the same rank
three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or loges@-3-4-5 is a straight
and so isl0-Jack-Queen-King-Ace , butQueen-King-Ace-2-3 is not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probabilitiyafing these various hands.

1. Download the following files frorthinkpython.com/code
Card.py : A complete version of th€ard , Deck andHand classes in this chapter.

PokerHand.py : An incomplete implementation of a class that representskemphand, and
some code that tests it.

2. If you runPokerHand.py , it deals seven 7-card poker hands and checks to see if ahgof t
contains a flush. Read this code carefully before you go on.

3. Add methods tdPokerHand.py namedhas_pair , has_twopair , etc. that return True or
False according to whether or not the hand meets the relesigaria. Your code should work
correctly for “hands” that contain any number of cards @ltiph 5 and 7 are the most common
sizes).

4. Write a method namedassify that figures out the highest-value classification for a hand
and sets théabel attribute accordingly. For example, a 7-card hand mightaiara flush
and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methodsnarking, the next step is to
estimate the probabilities of the various hands. Write afion inPokerHand.py that shuffles
a deck of cards, divides it into hands, classifies the hamis caunts the number of times
various classifications appear.

18.11. Exercises 181

6.

Print a table of the classifications and their probabaitiRun your program with larger and
larger numbers of hands until the output values converge¢asonable degree of accuracy.
Compare your results to the valueswétipedia.org/wiki/Hand_rankings

Exercise 18.6This exercise uses TurtleWorld from Chapter 4. You will @rdode that makes
Turtles play tag. If you are not familiar with the rules of tagpewikipedia.org/wiki/Tag_
(game) .

1.

Downloadthinkpython.com/code/Wobbler.py and run it. You should see a TurtleWorld
with three Turtles. If you press thun button, the Turtles wander at random.

. Read the code and make sure you understand how it works/Ndlfiger class inherits from

Turtle , which means that theurtle methodst , rt , fd andbk work on Wobblers.

The step method gets invoked by TurtleWorld. It invokster , which turns the Turtle
in the desired directionyobble , which makes a random turn in proportion to the Turtle’s
clumsiness, anahove, which moves forward a few pixels, depending on the Turpsed.

. Create a file namethgger.py . Import everything fromWobbler , then define a class named

Tagger that inherits fromWobbler . Call make world passing thdagger class object as an
argument.

. Add asteer method toTagger to override the one ifWobbler . As a starting place, write

a version that always points the Turtle toward the origimtHuse the math functioatan2
and the Turtle attributes, y andheading .

. Modify steer so that the Turtles stay in bounds. For debugging, you migimtwo use the

Step button, which invokestep once on each Turtle.

. Modify steer so that each Turtle points toward its nearest neighbor.: Hiattles have an

attribute,world , that is a reference to the TurtleWorld they live in, and thetl€World has an
attribute,animals , that s a list of all Turtles in the world.

. Modify steer so the Turtles play tag. You can add method$agger and you can override

steer and__init__ , but you may not modify or overridgtep , wobble or move. Also,
steer is allowed to change the heading of the Turtle but not thetiposi

Adjust the rules and yowsteer method for good quality play; for example, it should be
possible for the slow Turtle to tag the faster Turtles evaityu

You can get my solution frorthinkpython.com/code/Tagger.py

182 Chapter 18. Inheritance

Chapter 19

Case study: Tkinter

19.1 GuUI

Most of the programs we have seen so far are text-based, byt pragrams usgraphical user
interfaces also known as&Uls.

Python provides several choices for writing GUI-based paots, including wxPython, Tkinter, and
Qt. Each has pros and cons, which is why Python has not coedenga standard.

The one | will present in this chapter is Tkinter becausenkht is the easiest to get started with.
Most of the concepts in this chapter apply to the other GUI uhes too.

There are several books and web pages about Tkinter. One bE#t online resourcesAs Intro-
duction to Tkinter by Fredrik Lundh.

| have written a module calle@ui.py that comes with Swampy. It provides a simplified interface
to the functions and classes in Tkinter. The examples inctégpter are based on this module.

Here is a simple example that creates and displays a Gui:

To create a GUI, you have to impd@ti and instantiate a Gui object:
from Gui import *

g = Gui()

gtite(" Gui')
g.mainloop()

When you run this code, a window should appear with an empdy gguare and the titleui.
mainloop runs theevent loop which waits for the user to do something and responds acugyd
Itis an infinite loop; it runs until the user closes the windowpresses Control-C, or does something
that causes the program to quit.

This Gui doesn’t do much because it doesn’t havewiagets Widgets are the elements that make
up a GUI; they include:

Button: A widget, containing text or an image, that performs an actinen pressed.

Canvas: A region that can display lines, rectangles, circles anérothapes.

184 Chapter 19. Case study: Tkinter

Entry: A region where users can type text.
Scrollbar: A widget that controls the visible part of another widget.

Frame: A container, often invisible, that contains other widgets.

The empty gray square you see when you create a Gui is a Fraimen Ydu create a new widget,
it is added to this Frame.

19.2 Buttons and callbacks

The methodu creates a Button widget:
button = g.bu(text= ' Press me. ')

The return value fronbu is a Button object. The button that appears in the Frame isphigal
representation of this object; you can control the buttombgking methods on it.

bu takes up to 32 parameters that control the appearance anticiuf the button. These pa-
rameters are calledptions. Instead of providing values for all 32 options, you can usgword
arguments, likdéext= ' Press me. ', to specify only the options you need and use the default val-
ues for the rest.

When you add a widget to the Frame, it gets “shrink-wrapptdit' is, the Frame shrinks to the size
of the Button. If you add more widgets, the Frame grows to asnodate them.

The methoda creates a Label widget:
label = g.la(text= ' Press the button. ')

By default, Tkinter stacks the widgets top-to-bottom andtees them. We’ll see how to override
that behavior soon.

If you press the button, you will see that it doesn’t do muchafls because you haven't “wired it
up;” that is, you haven't told it what to do!

The option that controls the behavior of a buttordsmmand The value oftommand is a function
that gets executed when the button is pressed. For examgkej$ha function that creates a new
Label:

def make_label():
gla(text=" ' Thank you. ')

Now we can create a button with this function as its command:

button2 = g.bu(text= ' No, press me! ', command=make_label)

When you press this button, it should executde_label and a new label should appear.

The value of theeommand option is a function object, which is known asallback because after
you callbu to create the button, the flow of execution “calls back” whHemiser presses the button.

This kind of flow is characteristic afvent-driven programming. User actions, like button presses
and key strokes, are callegtents In event-driven programming, the flow of execution is deti@ed
by user actions rather than by the programmer.

The challenge of event-driven programming is to constriggtaf widgets and callbacks that work
correctly (or at least generate appropriate error mespémesny sequence of user actions.

19.3. Canvas widgets 185

Exercise 19.1Write a program that creates a GUI with a single button. Wherbutton is pressed
it should create a second button. Whkat button is pressed, it should create a label that says, “Nice
job!”.

What happens if you press the buttons more than once? Youweeamys solution athinkpython.
com/code/button_demo.py

19.3 Canvas widgets

One of the most versatile widgets is the Canvas, which csemtegion for drawing lines, circles
and other shapes. If you did Exercise 15.4 you are alreadyjid@amwith canvases.

The methodta creates a new Canvas:
canvas = g.ca(width=500, height=500)
width andheight are the dimensions of the canvas in pixels.

After you create a widget, you can still change the value$iefaptions with theonfig method.
For example, thég option changes the background color:

canvas.configlbg= ' white ')

The value ohyg is a string that names a color. The set of legal color namefféseht for different
implementations of Python, but all implementations prewad least:

white black
red green blue
cyan yellow magenta

Shapes on a Canvas are calieins. For example, the Canvas methodle draws (you guessed
it) a circle:

item = canvas.circle([0,0], 100, fill= "red ')
The first argument is a coordinate pair that specifies theeceiithe circle; the second is the radius.

Gui.py provides a standard Cartesian coordinate system with thimat the center of the Canvas
and the positivey axis pointing up. This is different from some other grapligstems where the
origin is in the upper left corner, with theaxis pointing down.

Thefill option specifies that the circle should be filled in with red.

The return value fromircle is an Item object that provides methods for modifying theniten the
canvas. For example, you can usefig to change any of the circle’s options:

item.config(fill= "yellow ', outline= ' orange ', width=10)
width is the thickness of the outline in pixelstline is the color.

Exercise 19.2Write a program that creates a Canvas and a Button. When #repussses the
Button, it should draw a circle on the canvas.

186 Chapter 19. Case study: Tkinter

19.4 Coordinate sequences

Therectangle method takes a sequence of coordinates that specify oppusiters of the rectan-
gle. This example draws a green rectangle with the lowectafter at the origin and the upper right
corner at{200,100):

canvas.rectangle([[0, 0], [200, 100]],
fill= ' blue ', outine= ' orange ', width=10)

This way of specifying corners is calledaunding boxbecause the two points bound the rectangle.
oval takes a bounding box and draws an oval within the specifigdmgte:
canvas.oval([[0, 0], [200, 100]], outline= ' orange ', width=10)

line takes a sequence of coordinates and draws a line that certhegioints. This example draws
two legs of a triangle:

canvas.line([[0, 100], [100, 200], [200, 100]], width=10)

polygon takes the same arguments, but it draws the last leg of thgpolfif necessary) and fills it
in:

canvas.polygon([[0, 100], [100, 200], [200, 100]],
fil=""red"', outline= ' orange ', width=10)

19.5 More widgets

Tkinter provides two widgets that let users type text: anrgmwhich is a single line, and a Text
widget, which has multiple lines.

en creates a new Entry:
entry = g.en(text= ' Default text. ")

Thetext option allows you to put text into the entry when it is creat€deget method returns the
contents of the Entry (which may have been changed by thg:user

>>> entry.get()
' Default text.

te creates a Text widget:

text = g.te(width=100, height=5)

width andheight are the dimensions of the widget in characters and lines.
insert puts text into the Text widget:

text.insert(END, " A line of text. ")

ENDis a special index that indicates the last character in thewilget.

You can also specify a character using a dotted index,llike which has the line number before
the dot and the column number after. The following exampldsatie letters nother ' after the
first character of the first line.

19.6. Packing widgets 187

>>> textinsert(1.1, ' nother ')

The get method reads the text in the widget; it takes a start and esielims arguments. The
following example returns all the text in the widget, indiugithe newline character:

>>> text.get(0.0, END)
" Another line of text.\n

Thedelete method removes text from the widget; the following exampéetes all but the first
two characters:

>>> text.delete(1.2, END)
>>> text.get(0.0, END)
"An\n'

Exercise 19.3Modify your solution to Exercise 19.2 by adding an Entry wetignd a second but-

ton. When the user presses the second button, it should r@a@ldraname from the Entry and use it
to change the fill color of the circle. Usenfig to modify the existing circle; don't create a new
one.

Your program should handle the case where the user triesatmgetthe color of a circle that hasn’t
been created, and the case where the color name is invalid.

You can see my solution #tinkpython.com/code/circle_demo.py

19.6 Packing widgets

So far we have been stacking widgets in a single column, bamadst GUIs the layout is more
complicated. For example, here is a slightly simplified ie@r®f TurtleWorld (see Chapter 4).

188 Chapter 19. Case study: Tkinter

Print canvas Quit

.
,_J“LJ'
1‘3 Make Turtle Clear
L\,_|
.
! - o
e - L

i
L, Run file ||{snowflake. py
EMT'
|
R
-1 world. clear ()
%‘; bob = Turtle (world)
)
S
.
I
L.
LAYy BT BTy
e *wn‘:: b
AT
L

-
g

Run code

This section presents the code that creates this GUI, biiokea series of steps. You can download
the complete example frothinkpython.com/code/SimpleTurtleWorld.py

At the top level, this GUI contains two widgets—a Canvas afilaane—arranged in a row. So the
first step is to create the row.

class SimpleTurtleWorld(TurtleWorld):
""This class is identical to TurtleWorld, but the code that
lays out the GUI is simplified for explanatory purposes.™"

def setup(self):
self.row()

setup is the function that creates and arranges the widgets. gimgrwidgets in a GUI is called
packing.

row creates a row Frame and makes it the “current Frame.” UnslErame is closed or another
Frame is created, all subsequent widgets are packed in a row.

Here is the code that creates the Canvas and the column Hnatrteotd the other widgets:

self.canvas = self.ca(width=400, height=400, bg= " white ")
self.col()

The first widget in the column is a grid Frame, which contamg fbuttons arranged two-by-two:

self.gr(cols=2)
self.bu(text= " Print canvas

, command=self.canvas.dump)

19.6. Packing widgets 189

self.bu(text= " Quit ', command=self.quit)

self.bu(text= ' Make Turtle ', command=self.make_turtle)
self.bu(text= ' Clear ', command=self.clear)

self.endgr()

gr creates the grid; the argument is the number of columns. &%dg the grid are laid out left-to-
right, top-to-bottom.

The first button useself.canvas.dump as a callback; the second useff.quit . These are
bound methods which means they are associated with a particular objebenvithey are invoked,
they are invoked on the object.

The next widget in the column is a row Frame that contains &oBuwnd an Entry:

self.row([0,1], pady=30)

self.bu(text= "Run file ', command=self.run_file)
self.en_file = self.en(text= ' snowflake.py ', width=5)
self.endrow()

The first argument toow is a list of weights that determines how extra space is aéatbetween
widgets. The lis{0,1] means that all extra space is allocated to the second widtéth is the
Entry. If you run this code and resize the window, you will se&t the Entry grows and the Button
doesn't.

The optionpady “pads” this row in they direction, adding 30 pixels of space above and below.

endrow ends this row of widgets, so subsequent widgets are packide icolumn FrameGui.py
keeps a stack of Frames:

« When you useow, col orgr to create a Frame, it goes on top of the stack and becomes the
current Frame.

* When you usendrow , endcol orendgr to close a Frame, it gets popped off the stack and
the previous Frame on the stack becomes the current Frame.

The methodun_file reads the contents of the Entry, uses it as a filename, read®tttients and
passes it taun_code . self.inter is an Interpreter object that knows how to take a string and
execute it as Python code.

def run_file(self):
filename = self.en_file.get()
fp = open(filename)
source = fp.read()
self.inter.run_code(source, filename)

The last two widgets are a Text widget and a Button:

self.te_code = self.te(width=25, height=10)

self.te_code.insert(END, " world.clear()\n ")
self.te_code.insert(END, ' bob = Turtle(world)\n ")
self.bu(text= " Run code', command=self.run_text)

run_text is similar torun_file except that it takes the code from the Text widget insteadaoh f
afile:

190 Chapter 19. Case study: Tkinter

def run_text(self):
source = self.te_code.get(1.0, END)
self.inter.run_code(source, ' <user-provided code> ')

Unfortunately, the details of widget layout are differembither languages, and in different Python
modules. Tkinter alone provides three different mechasifmarranging widgets. These mecha-
nisms are calledeometry managers The one | demonstrated in this section is the “grid” geoynetr
manager; the others are called “pack” and “place”.

Fortunately, most of the concepts in this section apply beoGUI modules and other languages.

19.7 Menus and Callables

A Menubutton is a widget that looks like a button, but whenspeal it pops up a menu. After the
user selects an item, the menu disappears.

Here is code that creates a color selection Menubutton (gowownload it fromthinkpython.
com/code/menubutton_demo.py):

g = Gui()
gla(' Select a color: ')
colors = ['red', 'green', 'blue ']

mb = g.mb(text=colors[0])

mb creates the Menubutton. Initially, the text on the buttothis name of the default color. The
following loop creates one menu item for each color:

for color in colors:
g.mi(mb, text=color, command=Callable(set_color, color)

The first argument afi is the Menubutton these items are associated with.

The command option is a Callable object, which is something new. So farhaee seen functions

and bound methods used as callbacks, which works fine if yolt Have to pass any arguments
to the function. Otherwise you have to construct a Callaltleat that contains a function, like

set_color , and its arguments, likeolor .

The Callable object stores a reference to the function amédtuments as attributes. Later, when
the user clicks on a menu item, the callback calls the funaiud passes the stored arguments.

Here is whaset_color might look like:

def set_color(color):
mb.config(text=color)
print(color)

When the user selects a menu item agtdcolor is called, it configures the Menubutton to display
the newly-selected color. It also print the color; if you this example, you can confirm that
set_color is called when you select an item (anat called when you create the Callable object).

19.8. Binding 191

19.8 Binding

A binding is an association between a widget, an event and a callbdwn an event (like a button
press) happens on a widget, the callback is invoked.

Many widgets have default bindings. For example, when yaspa button, the default binding
changes the relief of the button to make it look depressederWiou release the button, the binding
restores the appearance of the button and invokes the ciabipacified with theommand option.

You can use theind method to override these default bindings or to add new dreaexample, this
code creates a binding for a canvas (you can download theigakis section fronthinkpython.
com/code/draggable_demo.py):

ca.bind(' <ButtonPress-1> , make_circle)

The first argument is an event string; this event is triggevhdn the user presses the left mouse
button. Other mouse events inclugigtonMotion , ButtonRelease andDouble-Button

The second argument is an event handler. An event handlguiscion or bound method, like a
callback, but an important difference is that an event hemtdlkes an Event object as a parameter.
Here is an example:

def make_circle(event):
pos = ca.canvas_coords([event.x, event.y])
item = ca.circle(pos, 5, fill= "red")

The Event object contains information about the type of eaenl details like the coordinates of
the mouse pointer. In this example the information we nedtigslocation of the mouse click.
These values are in “pixel coordinates,” which are definethbyunderlying graphical system. The
methodcanvas_coords translates them to “Canvas coordinates,” which are corblgatiith Canvas
methods likecircle

For Entry widgets, it is common to bind the&Return> event, which is triggered when the user
presses thReturn or Enter key. For example, the following code creates a Button andrdryE

bu = g.bu(' Make text item;
en = g.en()
en.bind(' <Return>

, make_text)

', make_text)

make_text is called when the Button is pressed or when the userR@tsrn while typing in the
Entry. To make this work, we need a function that can be calted command (with no arguments)
or as an event handler (with an Event as an argument):

def make_text(event=None):
text = en.get()
item = ca.text([0,0], text)

make_text gets the contents of the Entry and displays it as a Text itetmarCanvas.

It is also possible to create bindings for Canvas items. Teviing is a class definition for
Draggable , which is a child class oktem that provides bindings that implement drag-and-drop
capability.

class Draggable(ltem):

192 Chapter 19. Case study: Tkinter

def __init_ (self, item):

self.canvas = item.canvas

selftag = item.tag
selfbind(' <Button-3> ', self.select)
selfbind(' <B3-Motion> ', self.drag)
self.bind(<Release-3> ', self.drop)

The init method takes an Item as a parameter. It copies thibuaéts of the Item and then creates
bindings for three events: a button press, button motiot barton release.

The event handleselect stores the coordinates of the current event and the origolal of the
item, then changes the color to yellow:

def select(self, event):
self.dragx = event.x

self.dragy = eventy
selffill = self.cget(il ')
self.config(fill= " yellow ')

cget stands for “get configuration;” it takes the name of an opéiem string and returns the current
value of that option.

drag computes how far the object has moved relative to the stppiiace, updates the stored coor-
dinates, and then moves the item.

def drag(self, event):
dx = eventx - self.dragx
dy = eventy - self.dragy

self.dragx = event.x
self.dragy = eventy

self.move(dx, dy)
This computation is done in pixel coordinates; there is nedrte convert to Canvas coordinates.
Finally, drop restores the original color of the item:

def drop(self, event):
self.config(fill=self.fill)

You can use th®raggable class to add drag-and-drop capability to an existing itear.example,
here is a modified version ofiake circle that usegircle to create an Item anbraggable to
make it draggable:

def make_circle(event):
pos = ca.canvas_coords([event.x, event.y])
item = ca.circle(pos, 5, fill= "red")
item = Draggable(item)

This example demonstrates one of the benefits of inheritayme can modify the capabilities of
a parent class without modifying its definition. This is partarly useful if you want to change
behavior defined in a module you did not write.

19.9. Debugging 193

19.9 Debugging

One of the challenges of GUI programming is keeping track loittv things happen while the GUI
is being built and which things happen later in response ¢o ergents.

For example, when you are setting up a callback, it is a comenam to call the function rather than
passing a reference to it:

def the_callback():
print(' Called. ")

g.bu(text=" ' This is wrong! , command=the_callback())

If you run this code, you will see that it caltse_callback immediately, andhen creates the
button. When you press the button, it does nothing becaesesttirn value fronthe_callback is
None. Usually you do not want to invoke a callback while you ar¢isgtup the GUI; it should only
be invoked later in response to a user event.

Another challenge of GUI programming is that you don’t haeatcol of the flow of execution.
Which parts of the program execute and their order are datedhby user actions. That means that
you have to design your program to work correctly for any fimesequence of events.

For example, the GUI in Exercise 19.3 has two widgets: onatesea Circle item and the other
changes the color of the Circle. If the user creates theecand then changes its color, there’s no
problem. But what if the user changes the color of a circl¢ do&sn’t exist yet? Or creates more
than one circle?

As the number of widgets grows, it is increasingly difficudtimagine all possible sequences of
events. One way to manage this complexity is to encapstiatstate of the system in an object and
then consider:

* What are the possible states? In the Circle example, wetroggtsider two states: before and
after the user creates the first circle.

« In each state, what events can occur? In the example, theas@ress either of the buttons,
or quit.

» For each state-event pair, what is the desired outcome@e Slirere are two states and two
buttons, there are four state-event pairs to consider.

* What can cause a transition from one state to another?drcéisie, there is a transition when
the user creates the first circle.

You might also find it useful to define, and check, invariahigt tshould hold regardless of the
sequence of events.

This approach to GUI programming can help you write correctecwithout taking the time to test
every possible sequence of user events!

19.10 Glossary

GUI: A graphical user interface.

widget: One of the elements that makes up a GUI, including buttonausigext entry fields, etc.

194 Chapter 19. Case study: Tkinter

option: A value that controls the appearance or function of a widget.

keyword argument: An argument that indicates the parameter name as part ofitfeéidn call.
callback: A function associated with a widget that is called when ther performs an action.
bound method: A method associated with a particular instance.

event-driven programming: A style of programming in which the flow of execution is det@ared
by user actions.

event: A user action, like a mouse click or key press, that causes la@itdspond.
event loop: An infinite loop that waits for user actions and responds.
item: A graphical element on a Canvas widget.

bounding box: A rectangle that encloses a set of items, usually specifigdbypposing corners.

pack: To arrange and display the elements of a GUI.
geometry manager: A system for packing widgets.

binding: An association between a widget, an event, and an eventdranihe event handler is
called when the event occurs in the widget.

19.11 Exercises

Exercise 19.4For this exercise, you will write an image viewer. Here isragle example:

g = Gui()

canvas = g.ca(width=300)

photo = Photolmage(file= ' danger.gif ')
canvas.image([0,0], image=photo)

g.mainloop()

Photolmage reads a file and returnsPhotolmage object that Tkinter can displaganvas.image
puts the image on the canvas, centered on the given cocedinéiu can also putimages on labels,
buttons, and some other widgets:

g.la(image=photo)
g.bu(image=photo)

Photolmage can only handle a few image formats, like GIF &pll Fout we can use the Python
Imaging Library (PIL) to read other files.

The name of the PIL module Image , but Tkinter defines an object with the same name. To avoid
the conflict, you can useport...as like this:

import Image as PIL
import ImageTk

The first line importdmage and gives it the local nameIL . The second line importisnageTk ,
which can translate a PIL image into a Tkinter Photolmageeldean example:

19.11. Exercises 195

image = PlL.open(' allen.png ')
photo2 = ImageTk.Photolmage(image)
g.la(image=photo2)

1. Downloadimage_demo.py , danger.gif andallen.png from thinkpython.com/code
Runimage_demo.py . You might have to instalIL andimageTk . They are probably in your
software repository, but if not you can get them frpythonware.com/products/pil/

2. Inimage_demo.py change the name of the second Photolmage frboto2 to photo and
run the program again. You should see the second Photolnuagetthe first.

The problem is that when you reassigoto it overwrites the reference to the first Photolm-
age, which then disappears. The same thing happens if ygnas$hotolmage to a local
variable; it disappears when the function ends.

To avoid this problem, you have to store a reference to eackoRhage you want to keep.
You can use a global variable, or store Photolmages in a ttatasre or as an attribute of an
object.

This behavior can be frustrating, which is why | am warning yand why the example image
says “Danger!”).

3. Starting with this example, write a program that takesrtame of a directory and loops
through all the files, displaying any files that PIL recogsizs images. You can usdra
statement to catch the files PIL doesn’t recognize.

When the user clicks on the image, the program should digptagext one.

4. PIL provides a variety of methods for manipulating imag&®u can read about them at
pythonware.com/library/pil/handbook . As a challenge, choose a few of these methods
and provide a GUI for applying them to images.

You can download a simple solution frahinkpython.com/code/ImageBrowser.py

Exercise 19.5A vector graphics editor is a program that allows users tovchad edit shapes on
the screen and generate output files in vector graphics terlika Postscript and SV

Write a simple vector graphics editor using Tkinter. At a mmam, it should allow users to draw
lines, circles and rectangles, and it should Qaevas.dump to generate a Postscript description of
the contents of the Canvas.

As a challenge, you could allow users to select and resigssitan the Canvas.

Exercise 19.6Use Tkinter to write a basic web browser. It should have a Wesdget where the
user can enter a URL and a Canvas to display the contents patie

You can use therllib.request module to download files (see Exercise 14.5) andHfdLParser
module to parse the HTML tags (séecs.python.org/lib/module-HTMLParser.html).

At a minimum your browser should handle plain text and hyipksl. As a challenge you could
handle background colors, text formatting tags and images.

1Seewikipedia.org/wiki/Vector_graphics_editor

196 Chapter 19. Case study: Tkinter

Appendix A

Debugging

Different kinds of errors can occur in a program, and it isfulsi® distinguish among them in order
to track them down more quickly:

« Syntax errors are produced by Python when it is translatiegsource code into byte code.
They usually indicate that there is something wrong withsiyretax of the program. Example:
Omitting the colon at the end of @ef statement yields the somewhat redundant message
SyntaxError: invalid syntax

< Runtime errors are produced by the interpreter if somgthives wrong while the program is
running. Most runtime error messages include informattmuawhere the error occurred and
what functions were executing. Example: An infinite recomséventually causes the runtime
error “maximum recursion depth exceeded.”

« Semantic errors are problems with a program that runs withmducing error messages but
doesn’t do the right thing. Example: An expression may noeveuated in the order you
expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of errouyare dealing with. Although the
following sections are organized by error type, some teples are applicable in more than one
situation.

A.l1 Syntax errors

Syntax errors are usually easy to fix once you figure out wheyt #ve. Unfortunately, the error
messages are often not helpful. The most common messagds@mxerror; invalid syntax
andSyntaxError: invalid token , heither of which is very informative.

On the other hand, the message does tell you where in thegonafe problem occurred. Actually,
it tells you where Python noticed a problem, which is not sea€ly where the error is. Sometimes
the error is prior to the location of the error message, oftethe preceding line.

If you are building the program incrementally, you shouldéa good idea about where the error
is. It will be in the last line you added.

198 Appendix A. Debugging

If you are copying code from a book, start by comparing youlecto the book’s code very carefully.
Check every character. At the same time, remember that tbk imight be wrong, so if you see
something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variaduhee

2. Check that you have a colon at the end of the header of evanpaund statement, including
for , while ,if , anddef statements.

3. Make sure that any strings in the code have matching qaotatarks.

4. If you have multiline strings with triple quotes (single @ouble), make sure you have ter-
minated the string properly. An unterminated string mayseaaninvalid token error at
the end of your program, or it may treat the following partloé program as a string until it
comes to the next string. In the second case, it might notym®dn error message at all!

5. An unclosed opening operatof-{, or[—makes Python continue with the next line as part
of the current statement. Generally, an error occurs alimosediately in the next line.

6. Check for the classie instead of= inside a conditional.

7. Check the indentation to make sure it lines up the way itipgpssed to. Python can handle
space and tabs, but if you mix them it can cause problems. &steAmay to avoid this problem
is to use a text editor that knows about Python and generatesistent indentation.

If nothing works, move on to the next section...

A.1.1 |keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t sethdt might be because you and the
interpreter are not looking at the same code. Check yourrganogning environment to make sure
that the program you are editing is the one Python is tryingito

If you are not sure, try putting an obvious and deliberatéayarror at the beginning of the program.
Now run it again. If the interpreter doesn’t find the new erymu are not running the new code.

There are a few likely culprits:

* You edited the file and forgot to save the changes beforamgriagain. Some programming
environments do this for you, but some don't.

* You changed the name of the file, but you are still runningatldename.
« Something in your development environment is configurediirectly.

« If you are writing a module and usirigport , make sure you don’t give your module the
same name as one of the standard Python modules.

* If you are usingmport to read a module, remember that you have to restart the neterpor
usereload to read a modified file. If you import the module again, it déeda anything.

If you get stuck and you can’t figure out what is going on, ongrapch is to start again with a new
program like “Hello, World!,” and make sure you can get a kngwogram to run. Then gradually
add the pieces of the original program to the new one.

A.2. Runtime errors 199

A.2 Runtime errors

Once your program is syntactically correct, Python can ataniipand at least start running it. What
could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of fumdiand classes but does not actually
invoke anything to start execution. This may be intentiaghgbu only plan to import this module
to supply classes and functions.

If it is not intentional, make sure that you are invoking adtion to start execution, or execute one
from the interactive prompt. Also see the “Flow of Executisaction below.

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “handften that means that it is caught
in an infinite loop or infinite recursion.

« If there is a particular loop that you suspect is the probladd aprint call immediately
before the loop that says “entering the loop” and anotheregliately after that says “exiting
the loop.”

Run the program. If you get the first message and not the segoatye got an infinite loop.
Go to the “Infinite Loop” section below.

* Most of the time, an infinite recursion will cause the progreo run for a while and then
produce a “RuntimeError: Maximum recursion depth exceédedr. If that happens, go to
the “Infinite Recursion” section below.

If you are not getting this error but you suspect there is dlera with a recursive method or
function, you can still use the techniques in the “InfinitecResion” section.

« If neither of those steps works, start testing other loapd ather recursive functions and
methods.

« If that doesn’t work, then it is possible that you don’t uretand the flow of execution in your
program. Go to the “Flow of Execution” section below.

Infinite Loop

If you think you have an infinite loop and you think you know wi@op is causing the problem,
add aprint call at the end of the loop that prints the values of the véemim the condition and the
value of the condition.

For example:

while x >0 and y < 0 :
do something to x
do something to y
print("x: ", X)

print("y: ", y)
print("condition: ", (x > 0 and y < 0))

200 Appendix A. Debugging

Now when you run the program, you will see three lines of oufpueach time through the loop.
The last time through the loop, the condition shoulddise . If the loop keeps going, you will be
able to see the values wfandy, and you might figure out why they are not being updated ctyrec

Infinite Recursion

Most of the time, an infinite recursion will cause the progtarmun for a while and then produce a
Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infirgtarsion, start by checking to make
sure that there is a base case. In other words, there showlonbe condition that will cause the
function or method to return without making a recursive iration. If not, then you need to rethink
the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to beimgathadd aprint call at the
beginning of the function or method that prints the paranset&low when you run the program,
you will see a few lines of output every time the function orthwoal is invoked, and you will see the
parameters. If the parameters are not moving toward thedzss you will get some ideas about
why not.

Flow of Execution

If you are not sure how the flow of execution is moving throughiryprogram, adgrint calls to
the beginning of each function with a message like “entefimgtionfoo ,” wherefoo is the name
of the function.

Now when you run the program, it will print a trace of each fime as it is invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a mgsghat includes the name of the
exception, the line of the program where the problem ocdyard a traceback.

The traceback identifies the function that is currently ingnand then the function that invoked it,
and then the function that invokeiat, and so on. In other words, it traces the sequence of function
invocations that got you to where you are. It also includeslitie number in your file where each
of these calls occurs.

The first step is to examine the place in the program wherenioe eccurred and see if you can
figure out what happened. These are some of the most commimeugrrors:

NameError: You are trying to use a variable that doesn'’t exist in theentrenvironment. Remem-
ber that local variables are local. You cannot refer to thesmfoutside the function where
they are defined.

TypeError: There are several possible causes:

* You are trying to use a value improperly. Example: indexarggring, list, or tuple with
something other than an integer.

» There is a mismatch between the items in a format string la@dtéms passed for con-
version. This can happen if either the number of items doésmadch or an invalid
conversion is called for.

A.3. Semantic errors 201

* You are passing the wrong number of arguments to a functiomethod. For methods,
look at the method definition and check that the first paranieself . Then look at the
method invocation; make sure you are invoking the methodmoobgect with the right
type and providing the other arguments correctly.

KeyError: You are trying to access an element of a dictionary using ghatythe dictionary does
not contain.

AttributeError: You are trying to access an attribute or method that doesxist eCheck the
spelling! You can usdir to list the attributes that do exist.

If an AttributeError indicates that an object hdsneType, that means that it islone. One
common cause is forgetting to return a value from a funcifgrgu get to the end of a function
without hitting areturn ~ statement, it returnisone. Another common cause is using the result
from a list method, likesort , that returnd\one.

IndexError: The index you are using to access a list, string, or tupledatgr than its length minus
one. Immediately before the site of the error, agdra call to display the value of the index
and the length of the array. Is the array the right size? Iéntthex the right value?

The Python debuggepdb) is useful for tracking down Exceptions because it allows tmexamine
the state of the program immediately before the error. Youread aboupdb at docs.python.
org/lib/module-pdb.html

A.2.4 | added so manyprint calls | get inundated with output.

One of the problems with usingint calls for debugging is that you can end up buried in output.
There are two ways to proceed: simplify the output or sinyglile program.

To simplify the output, you can remove or comment it calls that aren’t helping, or combine
them, or format the output so it is easier to understand.

To simplify the program, there are several things you can Eicst, scale down the problem the
program is working on. For example, if you are searchingtadisarch amall list. If the program
takes input from the user, give it the simplest input thatseaithe problem.

Second, clean up the program. Remove dead code and re@dheiprogram to make it as easy
to read as possible. For example, if you suspect that thdgnmis in a deeply nested part of the
program, try rewriting that part with simpler structure ytfiu suspect a large function, try splitting
it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads ydlietdoug. If you find that a program
works in one situation but not in another, that gives you & elnout what is going on.

Similarly, rewriting a piece of code can help you find subtlgé. If you make a change that you
think shouldn’t affect the program, and it does, that carytip off.

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug, seettai interpreter provides no infor-
mation about what is wrong. Only you know what the progranugp®sed to do.

202 Appendix A. Debugging

The first step is to make a connection between the programatekthe behavior you are seeing.
You need a hypothesis about what the program is actuallygd@me of the things that makes that
hard is that computers run so fast.

You will often wish that you could slow the program down to ramspeed, and with some debuggers
you can. But the time it takes to insert a few well-plapedt calls is often short compared to
setting up the debugger, inserting and removing breakpaamtd “stepping” the program to where
the error is occurring.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

* |s there something the program was supposed to do but whiesnd seem to be happening?
Find the section of the code that performs that function aa#lersure it is executing when
you think it should.

* Is something happening that shouldn’t? Find code in yoogmam that performs that function
and see if it is executing when it shouldn't.

* Is a section of code producing an effect that is not what yqeeted? Make sure that you
understand the code in question, especially if it involve®cations to functions or methods
in other Python modules. Read the documentation for thetifumeyou invoke. Try them out
by writing simple test cases and checking the results.

In order to program, you need to have a mental model of howprogwork. If you write a program
that doesn’t do what you expect, very often the problem isimt¢ite program; it's in your mental
model.

The best way to correct your mental model is to break the armgnto its components (usually
the functions and methods) and test each component indepiyndOnce you find the discrepancy
between your model and reality, you can solve the problem.

Of course, you should be building and testing componentsoasdgvelop the program. If you
encounter a problem, there should be only a small amountwfaogle that is not known to be
correct.

A.3.2 I've got a big hairy expression and it doesn’t do what | &pect.

Writing complex expressions is fine as long as they are rdadaiit they can be hard to debug. Itis
often a good idea to break a complex expression into a sdrassmnments to temporary variables.

For example:
self.hands[i].addCard(self.hands[self.findNeighbor(i)].popCard())
This can be rewritten as:

neighbor = self.findNeighbor (i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard(pickedCard)

A.3. Semantic errors 203

The explicit version is easier to read because the variateas provide additional documentation,
and it is easier to debug because you can check the types wit¢hmediate variables and display
their values.

Another problem that can occur with big expressions is tabrder of evaluation may not be what
you expect. For example, if you are translating the expoesgi into Python, you might write:

y = x [2 * math.pi

That is not correct because multiplication and divisionéhine same precedence and are evaluated
from left to right. So this expression computes 2.

A good way to debug expressions is to add parentheses to imakeder of evaluation explicit:
y = x [(2 * math.pi)

Whenever you are not sure of the order of evaluation, usengiggses. Not only will the program
be correct (in the sense of doing what you intended), it vidlbde more readable for other people
who haven’t memorized the rules of precedence.

A.3.3 I've got a function or method that doesn’t return what | expect.

If you have areturn statement with a complex expression, you don’t have a chenpent the
return value before returning. Again, you can use a temporary blgidor example, instead of:

return self.hands[i].removeMatches()
you could write:

count = self.hands]i].removeMatches()
return count

Now you have the opportunity to display the valueaint before returning.

A.3.4 I'mreally, really stuck and | need help.

First, try getting away from the computer for a few minutegntputers emit waves that affect the
brain, causing these symptoms:

« Frustration and rage.

 Superstitious beliefs (“the computer hates me”) and nagttinking (“the program only
works when | wear my hat backward”).

« Random walk programming (the attempt to program by wrigngry possible program and
choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, getand go for a walk. When you are
calm, think about the program. What is it doing? What are spossible causes of that behavior?
When was the last time you had a working program, and whataliddp next?

Sometimes it just takes time to find a bug. | often find bugs whan away from the computer and
let my mind wander. Some of the best places to find bugs arestrsihowers, and in bed, just before
you fall asleep.

204 Appendix A. Debugging

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally gek.sBommetimes you work on a program
so long that you can'’t see the error. A fresh pair of eyes isthesthing.

Before you bring someone else in, make sure you are prep#oed program should be as simple
as possible, and you should be working on the smallest ityaticiauses the error. You should have
print calls in the appropriate places (and the output they prodnoald be comprehensible). You
should understand the problem well enough to describe ttisely.

When you bring someone in to help, be sure to give them therirdtion they need:

« If there is an error message, what is it and what part of tbgnam does it indicate?

» What was the last thing you did before this error occurred?atWere the last lines of code
that you wrote, or what is the new test case that fails?

* What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what youdduawe done to find it faster. Next
time you see something similar, you will be able to find the magye quickly.

Remember, the goal is not just to make the program work. Tlaigdo learn how to make the
program work.

Index

abecedarian, 72, 83 attribute
abs function, 52 _dict _, 168
absolute path, 139, 145 class, 172,179
access, 89 initializing, 168
accumulator, 100 instance, 148, 153,172,179
histogram, 129 AttributeError, 152, 201
list, 93 augmented assignment, 93, 100
string, 175 Austin, Jane, 129
sum, 93 available colors, 154, 170
Ackerman function, 61
add method, 165 Bacon, Kevin, 146
addition with carrying, 68 Bangladesh, national flag, 154
algorithm, 3, 7, 67, 132 base case, 44, 47
Euclid, 62 benchmarking, 134, 136
MD5, 145 big, hairy expression, 202
square root, 69 binary search, 101
aliasing, 96, 100, 149, 151, 169 binding, 191, 194
copying to avoid, 99 bingo, 124
alphabet, 37 birthday, 160
alternative execution, 41 birthday paradox, 100
ambiguity, 5 bisect module, 101
anagram, 100 bisection search, 101
anagram set, 124, 142 bisection, debugging by, 68
and operator, 40 bitwise operator, 12
append method, 92, 98, 101, 174, 175 body, 19, 25, 65
arc function, 31 bool type, 39
argument, 17, 19, 21, 22, 26, 97 boolean expression, 39, 46
gather, 117 boolean function, 54, 155
keyword, 33, 36, 122, 184 boolean operator, 76
list, 97 borrowing, subtraction with, 68, 159
optional, 76, 95, 107 bound method, 189, 194
variable-length tuple, 117 bounding box, 154, 186, 194
argument scatter, 117 bracket
arithmetic operator, 12 squiggly, 103
assert statement, 159 bracket operator, 71, 89, 116
assignment, 15, 63, 89 branch, 41, 47
augmented, 93, 100 break statement, 65
item, 74, 90, 116 bug, 3,7
multiple, 68, 110 worst, 169
tuple, 116-118, 123 worst ever, 195

assignment statement, 10 Button widget, 184

206

Index

calculator, 8, 16
call graph, 109, 112
Callable object, 190
callback, 184, 189-191, 193, 194
Canvas coordinate, 185, 192
Canvas item, 185
Canvas object, 153
Canvas widget, 185
Car Talk, 86, 113, 124
Card class, 172
card, playing, 171
carrying, addition with, 68, 156, 158
case-sensitivity, variable names, 15
catch, 145
chained conditional, 41, 47
character, 71
checksum, 145
child class, 176, 179
choice function, 128
circle function, 31
circular definition, 56
class, 147, 153
Card, 172
child, 176, 179
Date, 160
Deck, 174
Hand, 176
Kangaroo, 169
parent, 176
Point, 147, 165
Rectangle, 149
SimpleTurtleWorld, 188
Time, 155
class attribute, 172, 179
class definition, 147
class diagram, 178, 180
class object, 148, 153
close method, 138, 141, 143
cmp function, 174
__cmp._ method, 173
Collatz conjecture, 65
colon, 19, 198
color list, 154, 170
comment, 14, 16
commutativity, 14, 167
compare function, 52
comparison
string, 77
tuple, 121,174
compile, 1, 7

composition, 19, 22, 26, 54, 174
compound statement, 40, 47
compression
file, 143
concatenation, 14, 16, 22, 72, 74, 95
list, 91, 98, 101
condition, 40, 47, 65, 199
conditional, 198
chained, 41, 47
nested, 42, 47
conditional execution, 40
conditional statement, 40, 47, 55
config method, 185
consistency check, 111, 158
contributors, vii
conversion
type, 17
coordinate
Canvas, 185, 192
pixel, 192
coordinate sequence, 186
copy
deep, 152
shallow, 152
slice, 74, 92
to avoid aliasing, 99
copy module, 151
copying objects, 151
count method, 76
counter, 75,79, 104, 111
counting and looping, 75
crosswords, 81
cummings, e. e., 3
cumulative sum, 94
Czech Republic, national flag, 154

data structure, 122, 123, 133
database, 141, 145, 146
Date class, 160
datetime module, 160
dbm module, 141
dead code, 52, 60, 201
debugger (pdb), 201
debugging, 3, 6, 7, 15, 25, 36, 45, 59, 77, 85,
98,111, 122,134, 144, 152, 159, 168,
178, 193, 197
by bisection, 68
emotional response, 6, 203
experimental, 4
superstition, 203

Index

207

Deck class, 174
deck, playing cards, 174
declaration, 110, 112
decorate-sort-undecorate pattern, 121
decrement, 64, 69
deep copy, 152, 153
deepcopy function, 152
def keyword, 19
default value, 130, 135, 164
avoiding mutable, 169
definition
circular, 56
class, 147
function, 19
recursive, 125
del operator, 94
deletion, element of list, 94
delimiter, 95, 100
deterministic, 128, 135
development plan, 36
encapsulation and generalization, 35
incremental, 52, 197
planned, 158
problem recognition, 84, 85
prototype and patch, 156, 158
random walk programming, 135, 203
diagram
call graph, 112
class, 178, 180
object, 148, 150, 152, 153, 155, 173
stack, 23, 97

type-based, 167
dispatch, type-based, 166
divisibility, 39
division

floating-point, 12

floor, 12, 46
divmod, 117, 158
docstring, 35, 36, 147
documentation, 8
dot notation, 18, 26, 75, 148, 162, 172
double letters, 86
Doyle, Arthur Conan, 4
drag-and-drop, 191
DSU pattern, 121, 123, 130
duplicate, 100, 101, 113, 145

Einstein, Albert, 33

element, 89, 99

element deletion, 94

elif keyword, 41

else keyword, 41

email address, 116

embedded object, 150, 153, 169
copying, 151

emotional debugging, 6, 203

empty list, 89

empty string, 79, 95

encapsulation, 32, 36, 54, 67, 75, 177

encode, 171, 179

encrypt, 171

end of line character, 144

state, 10, 63, 78, 90, 96, 97, 108, 120, 14&ntry widget, 186

150, 152, 155, 173

_dict__ attribute, 168
dict function, 103
dictionary, 103, 112, 119, 201

initialize, 120

invert, 107

lookup, 106

looping with, 106

reverse lookup, 106

subtraction, 131

traversal, 120, 168
dictionary methods

dbm module, 141
Dijkstra, Edsger, 85
directory, 139, 145

walk, 140

working, 139
dispatch

enumerate function, 119
epsilon, 67
equality and assignment, 63
equivalence, 96
equivalent, 100
error
compile-time, 197
runtime, 3, 15, 44, 46, 197
semantic, 4, 10, 15, 78, 197, 201
shape, 122
syntax, 3, 15, 197
error checking, 58
error message, 3, 4, 6, 10, 15, 197
Euclid’s algorithm, 62
eval function, 69
evaluate, 13
event, 194
event handler, 191

208

Index

event loop, 183, 194

Event object, 191

event string, 191

event-driven programming, 184, 193, 194

exception, 3, 7, 15, 197, 200
AttributeError, 152, 201
IndexError, 72, 78, 90, 201
IOError, 140
KeyError, 104, 201
NameError, 23, 200
OverflowError, 46
RuntimeError, 44
SyntaxError, 19

formal language, 4, 8
format operator, 138, 145, 200
format sequence, 138, 145
format string, 138, 145
frabjous, 56
frame, 23, 26, 43,57, 109
Frame widget, 188
Free Documentation License, GNU, v, vi
frequency, 105

letter, 124

word, 127, 136
fruitful function, 24, 26
frustration, 203

TypeError, 71, 74, 108, 116, 117, 138, 163unction, 19, 25, 161

200
UnboundLocalError, 111
ValueError, 45, 107, 116

exception, catching, 140
executable, 2, 7
exercise, secret, 145
exists function, 139
experimental debugging, 4, 135
expression, 12,13, 16
big and hairy, 202
boolean, 39, 46
extend method, 92

factorial function, 56, 58
False special value, 39
Fermat's Last Theorem, 47
fibonacci function, 57, 109
file, 137
compression, 143
permission, 140
reading and writing, 137
file object, 81, 86
filename, 139
filter pattern, 93, 100
find function, 74
flag, 110, 112
float function, 17
float type, 9
floating-point, 15, 67
floating-point division, 12
floor division, 12, 16, 46

flow of execution, 21, 26, 58, 59, 64, 179, 193,

200
flower, 37
folder, 139
for loop, 30, 72,91, 119

abs, 52

ack, 61

arc, 31

choice, 128
circle, 31

cmp, 174
compare, 52
deepcopy, 152
dict, 103
enumerate, 119
eval, 69

exists, 139
factorial, 56
fibonacci, 57, 109
find, 74

float, 17

getattr, 168
getcwd, 139
hasattr, 152, 168
input, 45

int, 17

isinstance, 58, 166
len, 26, 72, 104
list, 95

log, 18

max, 117,118
min, 117, 118
open, 81, 82, 137, 140, 141
polygon, 31
popen, 142
randint, 100, 128
random, 122, 128
recursive, 43
reload, 144, 198
repr, 144
reversed, 122

Index

209

shuffle, 176

sorted, 122

sgrt, 18, 53

str, 18

sum, 118

tuple, 115

type, 152

zip, 118
function argument, 21
function call, 17, 26
function composition, 54
function definition, 19, 20, 25
function frame, 23, 26, 43, 109
function object, 20, 26
function parameter, 21
function syntax, 162
function type

modifier, 157

pure, 156
function, fruitful, 24
function, math, 18
function, reasons for, 25
function, trigonometric, 18
function, tuple as return value, 117
function, void, 24
functional programming style, 157, 160

gamma function, 58
gather, 117, 123
GCD (greatest common divisor), 61
generalization, 32, 36, 83, 159
geometry manager, 190, 194
get method, 105
getattr function, 168
getcwd function, 139
global statement, 110
global variable, 110, 112
update, 110
GNU Free Documentation License, v, vi
graphical user interface, 183
greatest common divisor (GCD), 61
grid, 27
guardian pattern, 59, 60, 77
GUI, 183, 193
Gui module, 183
gunzip (Unix command), 143

Hand class, 176
hanging, 199
HAS-A relationship, 178, 180

hasattr function, 152, 168
hash function, 108, 112
hashable, 108, 112, 120
hashtable, 104, 112
header, 19, 25, 198
Hello, World, 6
help utility, 8
hexadecimal, 148
high-level language, 1, 7
histogram, 105, 112
random choice, 128, 131
word frequencies, 129
Holmes, Sherlock, 4
homophone, 113
HTMLParser module, 195
hyperlink, 195
hypotenuse, 54

identical, 100
identity, 96
if statement, 40
Image module, 194
image viewer, 194
IMDb (Internet Movie Database), 146
immutability, 74, 79, 97, 108, 115, 122
implementation, 105, 112, 134
import statement, 26, 29, 144
in operator, 76, 90, 104
increment, 64, 68, 157, 163
incremental development, 60, 197
indentation, 19, 162, 198
index, 71, 77, 79, 89, 99, 103, 200
looping with, 84, 91
negative, 72
slice, 73, 92
starting at zero, 71, 90
IndexError, 72, 78, 90, 201
infinite loop, 65, 69, 183, 199
infinite recursion, 44, 47, 58, 199, 200
inheritance, 176, 179
init method, 164, 168, 172,174, 176
initialization
variable, 68
initialization (before update), 64
instance, 29, 36, 148, 153
as argument, 149
as return value, 150
instance attribute, 148, 153, 172, 179
instantiation, 148
int function, 17

210

Index

int type, 9
integer, 15
interactive mode, 2, 7, 12, 24
interface, 33, 36, 179
interlocking words, 101
Internet Movie Database (IMDb), 146
interpret, 1, 7
invariant, 159, 160, 193
invert dictionary, 107
invocation, 75, 79
IOError, 140
is operator, 96, 151
IS-A relationship, 178, 180
isinstance function, 58, 166
item, 79, 89

Canvas, 185, 194

dictionary, 112
item assignment, 74, 90, 116
item update, 91
items method, 119
iteration, 63, 64, 69

join method, 95, 175

Kangaroo class, 169
Kevin Bacon Game, 146
key, 103, 112
key-value pair, 103, 112, 119
keyboard input, 45
KeyError, 104, 201
keys method, 106
keyword, 11, 16, 198
def, 19
elif, 41
else, 41
keyword argument, 33, 36, 122, 184, 194
Koch curve, 48

Label widget, 184
language
formal, 4
high-level, 1
low-level, 1
natural, 4
programming, 1
safe, 3
Turing complete, 55
leap of faith, 57
len function, 26, 72, 104
letter frequency, 124
letter rotation, 80, 113

Linux, 4
lipogram, 82
list, 89, 95, 99, 122
as argument, 97
comprehension, 94
concatenation, 91, 98, 101
copy, 92
element, 89
empty, 89
function, 95
index, 90
membership, 90
method, 92
nested, 89, 91
of objects, 174
of tuples, 118
operation, 91
repetition, 91
slice, 92
traversal, 91, 100
literalness, 5
local variable, 22, 26
log function, 18
logarithm, 136
logical operator, 39, 40
lookup, 112
lookup, dictionary, 106
loop, 31, 36, 65, 119
condition, 199
event, 183
for, 30, 72,91
infinite, 65, 183, 199
nested, 174
traversal, 72
while, 64
looping
with dictionaries, 106
with indices, 84, 91
with strings, 75
looping and counting, 75
low-level language, 1, 7
Is (Unix command), 142

map pattern, 93, 100
map to, 171

mapping, 90, 100, 133
Markov analysis, 132
mash-up, 133

math function, 18

max function, 117,118

Index

211

McCloskey, Robert, 72
MDS5 algorithm, 145
membership
binary search, 101
bisection search, 101
dictionary, 104
list, 90
set, 104
memo, 109, 112
mental model, 202
Menubutton widget, 190
metaphor, method invocation, 163
metathesis, 124
method, 75, 79, 161, 169
cmp, 173
_str__, 165,174
add, 165
append, 92, 98, 174, 175
close, 138, 141, 143
config, 185
count, 76
extend, 92
get, 105
init, 164,172,174, 176
items, 119
join, 95,175
keys, 106
mro, 179
pop, 94,175
radd, 167
read, 143
readline, 81, 143
remove, 94
replace, 127
setdefault, 109
sort, 92,99, 121,176
split, 95, 116
string, 79
strip, 82, 127
translate, 127
update, 120
values, 104
void, 93
method append, 101
method resolution order, 179
method syntax, 162
method, bound, 189
method, list, 92
min function, 117, 118
model, mental, 202

modifier, 157, 160
module, 18, 26
bisect, 101
copy, 151
datetime, 160
dbm, 141
Gui, 183
HTMLParser, 195
Image, 194
os, 139
pickle, 137, 141
pprint, 112
profile, 134
random, 100, 122, 128, 176
reload, 144, 198
shelve, 142, 146
string, 127
structshape, 122
urllib.request, 145, 195
Visual, 169
vpython, 169
World, 153
module object, 18, 143
module, writing, 143
modulus operator, 39, 46

Monty Python and the Holy Grail, 156

MP3, 145

mro method, 179

multiline string, 35, 198

multiple assignment, 63, 68, 110

multiplicity (in class diagram), 178, 180

mutability, 74, 90, 92, 97, 111, 115, 122, 150

mutable object, as default value, 169

NamekError, 23, 200
natural language, 4, 8
negative index, 72

nested conditional, 42, 47
nested list, 89, 91, 100
newline, 45, 63, 175
Newton’s method, 66

None special value, 24, 52, 60, 93, 94

not operator, 40
number, random, 128

object, 74, 79, 95, 96, 100, 147
Callable, 190
Canvas, 153
class, 148
copying, 151

212

Index

embedded, 150, 153, 169

Event, 191

file, 81, 86

function, 20, 26

module, 143

mutable, 150

printing, 162
object code, 2,7
object diagram, 148, 150, 152, 153, 155, 173
object-oriented language, 168
object-oriented programming, 161, 169, 176
odometer, 86
open function, 81, 82, 137, 140, 141
operand, 12, 16
operator, 16

and, 40

bitwise, 12

boolean, 76

bracket, 71, 89, 116

del, 94

format, 138, 145, 200

in, 76, 90, 104

is, 96, 151

logical, 39, 40

modulus, 39, 46

not, 40

or, 40

overloading, 169

relational, 40, 173

slice, 73,79, 92, 98, 116

string, 14

update, 93
operator overloading, 166, 173
operator, arithmetic, 12
option, 184, 194
optional argument, 76, 95, 107
optional parameter, 130, 164
or operator, 40
order of operations, 13, 15, 203
0os module, 139
other (parameter name), 164
OverflowError, 46
overloading, 169
override, 131, 136, 164, 173, 176, 179

packing widgets, 188, 194
palindrome, 61, 79, 84, 86
parameter, 21, 23, 25, 97
gather, 117
optional, 130, 164

other, 164
self, 163
parent class, 176, 179
parentheses
argumentin, 17
empty, 19, 75
matching, 3
overriding precedence, 13
parametersin, 21, 22
parent class in, 176
tuplesin, 115
parse, 5, 8, 146
pass statement, 41
path, 139, 145
absolute, 139
relative, 139
pattern
decorate-sort-undecorate, 121
DSU, 121, 130
filter, 93, 100
guardian, 59, 60, 77
map, 93, 100
reduce, 93, 100
search, 75, 79, 83, 107
swap, 116
pdb (Python debugger), 201
PEMDAS, 13
permission, file, 140
persistence, 137, 145
pi, 18, 69
pickle module, 137, 141
pickling, 141
pie, 37
PIL (Python Imaging Library), 194
pipe, 142, 145
pixel coordinate, 192
plain text, 81, 127, 146, 195
planned development, 158, 160
playing card, Anglo-American, 171
poetry, 5
Point class, 147, 165
point, mathematical, 147
poker, 171, 180
polygon function, 31
polymorphism, 168, 169, 178
pop method, 94, 175
popen function, 142
portability, 1, 7
postcondition, 36, 59, 179
pprint module, 112

Index

213

precedence, 16, 203
precondition, 36, 59, 100, 179
prefix, 133

pretty print, 112

print statement, 6, 8, 165, 201
problem recognition, 84—86
problem solving, 1, 7

profile module, 134

program, 2, 7

program testing, 85
programming language, 1
Project Gutenberg, 127
prompt, 2, 7, 45

prose, 5

prototype and patch, 156, 158, 160
pseudorandom, 128, 135
pure function, 156, 160
Puzzler, 86, 113, 124
Pythagorean theorem, 52
Python debugger (pdb), 201
Python Imaging Library (PIL), 194
python.org, 8

guotation mark, 6, 9, 35, 74, 198

radd method, 167
radian, 18
rage, 203
raise statement, 107, 159
Ramanujan, Srinivasa, 69
randint function, 100, 128
random function, 122, 128
random module, 100, 122, 128, 176
random number, 128
random text, 133
random walk programming, 135, 203
rank, 171
read method, 143
readline method, 81, 143
Rectangle class, 149
recursion, 42, 43, 47, 55, 57
base case, 44
infinite, 44, 58, 200
recursive definition, 56, 125
reduce pattern, 93, 100
reducible word, 113, 125
redundancy, 5
refactoring, 34, 36
reference, 97, 100
aliasing, 96

relational operator, 40, 173
relative path, 139, 145
reload function, 144, 198
remove method, 94
repetition, 30
list, 91
replace method, 127
repr function, 144
representation, 147, 149, 171
return statement, 43, 51, 203
return value, 17, 26, 51, 150
tuple, 117
reverse lookup, dictionary, 106, 112
reverse word pair, 101
reversed function, 122
rotation
letters, 113
rotation, letter, 80
rules of precedence, 13, 16
running pace, 8, 16, 160
runtime error, 3, 15, 44, 46, 197, 200
RuntimeError, 44, 58

safe language, 3
sanity check, 111
scaffolding, 53, 60, 112
scatter, 117,123
Scrabble, 124
script, 2, 7
script mode, 2, 7,12, 24
search, 107
search pattern, 75, 79, 83
search, binary, 101
search, bisection, 101
secret exercise, 145
self (parameter name), 163
semantic error, 4, 8, 10, 15, 78, 197, 201
semantics, 4, 8, 161
sequence, 71, 79, 89, 95, 115, 122
coordinate, 186
set, 131
anagram, 124, 142
set membership, 104
setdefault method, 109
sexagesimal, 158
shallow copy, 152, 153
shape, 123
shape error, 122
shell, 142
shelve module, 142, 146

214

Index

shuffle function, 176
SimpleTurtleWorld class, 188
sine function, 18
singleton, 108, 112, 115
slice, 79
copy, 74, 92
list, 92
string, 73
tuple, 116
update, 92
slice operator, 73, 79, 92, 98, 116
sort method, 92,99, 121, 176
sorted function, 122
source code, 2, 7
special case, 85, 86, 157
special value
False, 39
None, 24, 52, 60, 93, 94
True, 39
split method, 95, 116
sgrt, 53
sqgrt function, 18
square root, 66
squiggly bracket, 103

stack diagram, 23, 26, 36, 43, 56, 60, 97

immutable, 74

method, 75

multiline, 35, 198

operation, 14

slice, 73

triple-quoted, 35
string method, 79
string module, 127
string representation, 144, 165
string type, 9
strip method, 82, 127
structshape module, 122
structure, 5
subclass, 176
subject, 162, 169, 189
subtraction

dictionary, 131

with borrowing, 68
subtraction with borrowing, 159
suffix, 133
suit, 171
sum function, 118
superclass, 176
superstitious debugging, 203
SVG, 195

state diagram, 10, 15, 63, 78, 90, 96, 97, 108wampy, 29, 81, 153, 181, 183

120, 148, 150, 152, 155, 173

statement, 12, 15
assert, 159
assignment, 10, 63
break, 65
compound, 40
conditional, 40, 47, 55
for, 30, 72,91
global, 110
if, 40
import, 26, 29, 144
pass, 41
print, 6, 8, 165, 201
raise, 107, 159
return, 43, 51, 203
try, 140
while, 64

step size, 79

str function, 18

__str__method, 165, 174

string, 9, 15, 95, 122
accumulator, 175
comparison, 77
empty, 95

swap pattern, 116
syntax, 3, 7, 161, 198
syntax error, 3, 7, 15, 197
SyntaxError, 19

Tagger, 181
temporary variable, 51, 60, 203
test case, minimal, 201
testing
and absence of bugs, 85
incremental development, 52
interactive mode, 2
is hard, 85
knowing the answer, 53
leap of faith, 57
minimal test case, 201
text
plain, 81, 127, 146, 195
random, 133
text file, 145
Text widget, 186
Time class, 155
Tkinter, 183
token, 5, 8

Index 215

traceback, 24, 26, 44, 45, 107, 200 Unix command
translate method, 127 gunzip, 143
traversal, 72, 75, 77, 79, 83, 93, 100, 105, 106, Is, 142
118, 119,122,129 update, 64, 66, 68
dictionary, 168 coordinate, 192
list, 91 database, 141
traverse global variable, 110
dictionary, 120 histogram, 129
triangle, 47 item, 91
trigonometric function, 18 slice, 92
triple-quoted string, 35 update method, 120
True special value, 39 update operator, 93
try statement, 140 URL, 145, 195
tuple, 115, 117, 122, 123 urllib.request module, 145, 195
as key in dictionary, 120, 134 use before def, 15, 21
assignment, 116 user-defined type, 147, 155
comparison, 121, 174
in brackets, 120 value, 9, 15, 95, 96, 112
singleton, 115 default, 130
slice, 116 tuple, 117
tuple assignment, 117, 118, 123 ValueError, 45, 107, 116
tuple function, 115 values method, 104
Turing complete language, 55 variable, 10, 15
Turing Thesis, 55 global, 110
Turing, Alan, 55 local, 22
turtle typewriter, 37 temporary, 51, 60, 203
TurtleWorld, 29, 48, 181 updating, 64
type, 9, 15 variable-length argument tuple, 117
bool, 39 vector graphics, 195
dict, 103 veneer, 175,179
file, 137 Visual module, 169
float, 9 void function, 24, 26
int, 9 void method, 93
list, 89 vpython module, 169
set, 131
str, 9 walk, directory, 140
tuple, 115 while loop, 64
user-defined, 147, 155 whitespace, 25, 46, 82, 144, 198
type checking, 58 widget, 183, 193
type conversion, 17 Button, 184
type function, 152 Canvas, 185
type-based dispatch, 166, 167, 169 Entry, 186
TypeError, 71, 74, 108, 116, 117, 138, 163,200 Frame, 188
typewriter, turtle, 37 Label, 184
typographical error, 135 Menubutton, 190
Text, 186
UML, 178 widget, packing, 188
UnboundLocalError, 111 word count, 143
underscore character, 11 word frequency, 127, 136

unigueness, 101 word, reducible, 113, 125

216 Index

working directory, 139
World module, 153
worst bug, 169

ever, 195

zero, index starting at, 71, 90
zip function, 118

use with dict, 120
Zipf's law, 136

