COMPSCI el

Principles of Programming

Lecture 22 — More on dictionaries, using dictionaries to manage a small file of information

CompSci 101 - Principles of Programming 2

Learning outcomes

= At the end of this lecture, students should be able to:
= Delete key:value pairs from a dictionary
= Create a list of keys, values, key:value tuples from a dictionary
= Use dictionary objects to manage a small file of information

CompSci 101 - Principles of Programming 3

Recap

CompSci 101 - Principles of Programming 4

Deleting a key:value pair from the dict object

= Dictionaries - dictionaries are used to store key:value pairs (items)
= a dictionary object can be created in two ways
= jtems can be added to a dictionary
= |tems can be retrieved from the dictionary
= the pairs in a dictionary can be traversed using for ... in

def main() :

english italian = {"yes":"si", "bye":"ciao",
llnoll s Ilno n o llmaybell H n forsell 7
"thank you":"grazie"} ciao
english italian["never"] = "mai" mai
no

print (english italian["bye"])

f
for word in english italian: Cc;:;ze
print (english italian[word]) ~
print(len(english italian)) grazie

main () 6

= The del operator is used to delete a key:value pair from the
dictionary.

def main() :
my dict = {"a": 4, "b": 6,
print ("1.", my dict)

nan, 5}

1.{'a":4,'b": 6, 'c": 5}
2.{'a": 4, 'c": 5}
3.{'c": 5}

del my dict["b"]
print("2.", my dict)

del my dict(["a"]
print("3.", my dict)

main ()

CompSci 101 - Principles of Programming 5

Deleting a key:value pair from a dict object

CompSci 101 - Principles of Programming 6

Methods which can be used with a dict object

= The del operator gives an error if the key of the key:value pair being
deleted is not in the dictionary. Because of this, it is customary to
test before deleting a key:value pair.

def main() :
my dict = {"a": 4, "b": 6,
print("1l.", my dict)

wen: 5)

if "b" in my dict: #Test first

del my dict["b"]

print("2.m, my_dict) 1. {'a': 4,'b": 6, 'c" 5}
2.{'a":4,'c": 5}

del my dict["z"] Other error information

print("3.", my dict) KeyError: 'z

main ()

= The keys, the values, the associations as tuples, can be obtained
from a dictionary object using the methods:

my_dict ={...}
my_dict.items() — to access all the key/value pairs as tuples
my_dict.keys() — to access all the keys

my_dict.values() —to access all the values

b

) def main(): ¢

" The elements in my dict = {"a": 4, "b": 6, "c": 5} |a

these collections for letter in my dict.keys(): 6

can be accessed FESmE (B) 5

)] for number in my dict.values(): 4
using a for ... in print (mumbar) (b’ 6)
loop. for item in my dict.items(): ('c',’5)

print (item) .

main () (7'4)

CompSci 101 - Principles of Programming 7

Methods which can be used with a dict object

CompSci 101 - Principles of Programming 8

Methods which can be used with a dict object

= When a for ... in loop is used with a dictionary object, Python loops
through each key in the dictionary:

def main() :
my dict = {"a": 4,

Note that both
these loops do
the same job.

"hn, 6, "g": 5}

for letter in my dict.keys(): «——F |
print (letter)

for key in my dict:
print (key)

main ()

Q 6 T 9 o T

= Often it is useful to convert the individual keys (or values, or item
tuples) of the dictionary into lists by enclosing the keys (or values,
or item tuples) in list():

def main():

my dict = {"a": 4, "b": 6, "c": 5}

items list = list(my dict.items())
keys list = list(my dict.keys())
values list = list(my dict.values())

print ("items list", items list)
print ("keys list", keys list)
print ("values list", values list)

main ()

items list [('a’, 4), ('c', 5), ('b’, 6)]
keys list ['a’, 'c', 'b']
values list [4, 5, 6]

CompSci 101 - Principles of Programming 9

Note on deleting key-value pairs from dictionary objects

CompSci 101 - Principles of Programming 10

Using dictionaries - Our file information

If you try and remove elements from a dict object while iterating
through its keys using a for ... in loop, you will get an error.

def main () :
my dict = {"and":4,"many":2,"for":5,"very":1}
for key in my dict:

del my dict[keyl]

main () RuntimeError: dictionary changed size during iteration

Instead, create a separate list of the dictionary keys, iterate through
this list and delete any unwanted items from the dict object:

def main():
my dict = {"and":4,"many":2,"for":5,"very":1}
print (my dict)
keys list = list(my dict.keys())
for key in keys list:
del my dict[keyl]
print (my dict)

{"and": 4,
main () 8

"many®: 2, "for": 5, "very": 1}

= We wish to manage a small file of ratings for four films.
= The film list is:

‘film_list = ["Jaws", "The Goonies", "Aliens", "Commando"] ‘

= The text file, "Ratings.txt", stores the ratings made by seven people
of the four films (0 means the person didn't rate the film, 1 means
the person hated the film, 9 means they loved it):

Mary 2 0 6 2
Joy 2 8 3 9
7
Li 0
Jo 3
Sam 9 2 3 8
John 0 9 4 8

7 20
2 38
208

CompSci 101 - Principles of Programming 11

Loading the information

CompSci 101 - Principles of Programming 12

Loading the file information into dictionaries

= Firstly we read all the lines of text from the file

into a list (removing the newline character - "\n" - |Mary 2 0 6 2

Joy 2 8 3 9
from the end of each line). Adam 7 2 0 7

Lio238
def get lines from file(filename): Jo 3208

2?77 Sam 9 2 3 8
John 0 9 4 8

= person_name : list of ratings dictionary, i.e., the person_name is the
key and the list of ratings is the corresponding value.

def main():
film list = ["Jaws", "The Goonies", "Aliens", "Commando"]

number of films = len(film list)
filename = "Ratings.txt"

lines of text = get lines from file(filename)

main ()

*{ ["Mary 206 2", "Joy2839",..]

Mary 2 0 6 2

["Mary206 2", "Joy2839",..]

John 0 9 4 8

{ "Mary":[2, 0,6, 2],
"Joy": [2, 8, 3, 9],

CompSci 101 - Principles of Programming 13

Loading the file information into dictionaries

CompSci 101 - Principles of Programming 14

Loading the file information into dictionaries

= From all the 'lines of text' list: \ ["Mary2062","Joy2839",..]

U

we wish to create a dictionary: person_name : list of ratings

def get people ratings dict(lines of text):
people ratings = {}

return people ratings

def main() :

film list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number of films = len(film list)
filename = "Ratings.txt"

lines of text = get lines from file(filename)
people ratings dict = get people ratings dict(lines of text)

‘film_list = ["Jaws", "The Goonies", "Aliens", "Commando"] ‘

= person_name : list of ratings dictionary (see slides 12 and 13)

= film_title : list of ratings dictionary, i.e., the film_title is the key and
the list of seven ratings (one from each person) is the
corresponding value.

| ["Mary2062","oy2839",..] |

!
/ { "Mary": [2,0,6,2],

7 “Joy": [2' 8' 3' 9]'

Mary 2 0 6 2
Joy 2 8 3 9
Adam
Li 0
Jo 3
Sam 9 2 3 8 J
John 0 9 4 8

720
238
208

{"laws": [2,2,7,0,3,9,0]

"The Goonies" : [0, 8, 2, 2, 2, 2, 9]
"Aliens": [6, 3,0, 3, 0, 3, 4]
"Commando" :[2,9, 7, 8, 8, 8, 8]

main () | {"Mary":[2,0,6,2],"Joy": [2,8,3,9], .} | }
Loading the information into dictionaries The two dictionaries
= From the people dictionary ‘ {"Mary": [2, 0, 6, 2], "Joy": [2, 8, 3, 9], ...} ‘ = So far, from the film list:
we wish to create another dictionary: film_title:list of ratings \ film list = ["Jaws", "The Goonies", "Aliens", "Commando"] \

def get film ratings dict(film list, people ratings dict):
#Jaws - get the first rating from every person
#The Goonies- get the second rating from every person, etc.
film index = 0
film ratings dict = {}

return film ratings dict

def main() :

film list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number of films = len(film list)
filename = "Ratings.txt"

lines of text = get lines from file(filename)
people ratings dict = get people ratings dict(lines of text)
film_ratingirdict = get film ratings dict(film list,

people ratings dict)

| {Uaws':[2,2,7,0,3,9, 0], 'The Goonies': [2,2,2,0,9,2,8], ..} |

main ()

and the ratings information in the file: ting
Mary 2 0 6 2

Joy 2 8 3 9

Adam 7 2 0 7
we have created two dictionaries: Bel & AR
Jo 3208

people_ratings_dict Sam 9 2 3 8

John 0 9 4 8

{
'Mary': [2, 0, 6, 2], film_ratings_dict
'John': [0, 9, 4, 8], {

'Adam': [7, 2,0, 7],

"Jaws": [2, 2, 7,0, 3,9, 0]
'Sam": [9, 2, 3, 8],

o "The Goonies": [0, 8, 2, 2, 2, 2, 9]
Joy':[2,8,3, 9], "Aliens": [6, 3, 0, 3, 0, 3, 4]

Jo': 3, 2,0, 8], "Commando": [2, 9,7, 8, 8, 8, 8]
'Li": [0, 2, 3, 8] }

}

CompSci 101 - Principles of Programming 17

Using the dictionaries

CompSci 101 - Principles of Programming

18

Using the dictionaries

= The user can select a person's name from the dictionary keys, see the
person's ratings list as well as the average of that person's non-zero
ratings.

def process person ratings request (people ratings dict):
2?27

def main() :

process person ratings request (people ratings dict)

main ()
John i

{ people_ratings_dict Mary
'Mary': [2, 0, 6, 2], Adam
‘John': [0, 9, 4, 8], Jo
'Adam': [7, 2,0, 7], Joy
'Sam'": [9, 2, 3, 8], Li
‘Joy": [2, 8, 3, 9], Sam
'J‘_)': [3,2,0,8], Enter name: Sam
'}L": [0,2,3,8] [9, 2, 3, 8] Sam - average rating: 5.5

= The user can select a person from the dictionary keys and see the
person's ratings list as well as the

average of their non-zero ratings.

| {"Mary":[2,0,6,2], "loy": [2,8,3,9], ...

}

7
def process person ratings request (people ratings dict):

def display keys(dictionary):
2?27

def get average rating(list of numbers):
ardrd

def main():
film list = ["Jaws", "The Goonies",
number of films = len(film list)
filename = "Ratings.txt"
lines of text = get lines from file(filename)
people ratings dict = get people ratings dict(lines of text)
film ratings_dict = get film ratings dict(film list, people ratings_dict)

"Aliens", "Commando"]

print ("Process People-Rating Request")
process person ratings request (people ratings dict)

CompSci 101 - Principles of Programming 19

Using the dictionaries

CompSci 101 - Principles of Programming

20

Using the dictionaries

= The user can select a film from a list of titles, see the film's ratings as

film_ratings_dict

well as the average of all the non-zero ratings |{
. "Jaws": [2,2,7,0,3,9,0]

for that film. "The Goonies": [0, 8, 2, 2, 2, 2, 9]

"Aliens": [6, 3,0, 3, 0, 3, 4]

"Commando": [2,9, 7, 8, 8, 8, 8]

}

= The user can select a film from a list of titles, and see the film's

ratings as well as the average of all the non-zero ratings for that film.

| {9aws':[2,2,7,0,3,9,0], 'The Goonies": [0, 8, 2, 2,2,2,9], ..}

def process film ratings request (film list,
R

film ratings dict):

def main() :

process film ratings request(film list,
main ()

film ratings dict)

Process Film-Rating Request

1Jaws

2 The Goonies

3 Aliens

4 Commando

Enter selection: 1

[2,2,7,0,3,9, 0] Jaws - average rating: 4.6

def processifilmﬁratingsirequest(film_list,fifm_ratings_dict):

def display numbered list(list of items):
2?7

def get average rating(list of numbers):
#see previous code

def main():
film list = ["Jaws", "The Goonies",
number of films = len(film list)
filename = "Ratings.txt"
lines of text = get lines from file(filename)
people_ratings dict = get people ratings dict(lines_of text)
film ratings dict = get film ratings dict(film list, people ratings dict)

"Aliens", "Commando"]

print ("Process Movie-Rating Request")

process film ratings request(film list, film ratings dict)

CompSci 101 - Principles of Programming 21 CompSci 101 - Principles of Programming 22

Summary Python features used in this lecture

= The del operator is used to delete an key:value pair from the my_dict = {"a": 4, "b": 6, "c": 5}
dictionary. , _
for letter in my dict.keys():
= The keys, the values, the associations as tuples can be obtained print (letter)
from a dictionary object using the methods: for number in my_dict.values():

dict.i Il the k | . | print (number)
my_dict.items() — to access all the key/value pairs as tuples for item in my dict.items():
my_dict.keys() — to access all the keys print (item)
my_dict.values() — to access all the values items list = list(my dict.items())
keys list = list(my dict.keys())

- . lues list = list (my dict.val
Often it is useful to convert the individual keys (or values, or item vaites_tis ist(my dict.values())

tuples) of the dictionary into lists by enclosing the keys (or values, print ("items list", items list)
oriten1tupﬂes)in|Et0 print ("keys list", keys list)
print ("values list", values list)

if "b" in my_ dict: #Test first
del my dict["b"]

