COMPSCI Jel

Principles of Programming

Lecture 21 — Python dictionaries 1

CompSci 101 - Principles of Programming 2

Learning outcomes

= At the end of this lecture, students should be able to:

= understand what a dictionary is
= create a dictionary object
= add items to a dictionary
= retrieve items from a dictionary
= traverse the pairs in a dictionary

CompSci 101 - Principles of Programming

3

Recap

CompSci 101 - Principles of Programming 4

Python dictionaries

= Exercise from lecture 21 on input and output:

main ()

outfile =

open(filename,

||wlr)

for item in list of items:

outfile.write(item + "\n")

def main():

save_stock("stock2.txt",

ocoutfile.close()

def save_stock(filename, list_of_ items):

items_list)

tem_ist

beaL, Fresh toast bread white {700g),3.99,201

DCYWL, FTESN TOE5T Dread Wnlte 1/eegl, .99,
bc@@z, Low-fat milk (2 litre),4.8,10
bc@@3,v-energy drink,2.75,9

be@@dd, Fresh garlic (458q),1.98,11
be@ds, Coca-Cola (308 ml),2.5,18
bc@@é,Pineapple,3.6,6
bc@d7,Mango,1.89,7

bc@@8,Snickers chocolate bar,1.8,16
bce@d,Broccoli,1.47,11

bc@1d,Washed Potato (2.5kg),2.98,7
be@ll,Cat food / Treats,2.75,15
be@l2,pizza, 6.54.4
ho@l3,pestn,d.44,2

bc@id, Champagne, 15,65, 44

= A dictionary is a mapping from a key to its associated data

value.
= Each key maps to a value.

= The key has to be unique and an immutable object.
= A phone book is an example of a mapping: the key is the person's name

(plus address) and the associated value is their phone number.

You can think of a dictionary as a list|

of pairs, where the first element of
the pair, the key, is used to retrieve
the second element, the
corresponding value.

= The key and its associated value is called a
key-value pair or it can be called an item.

d 01274 603920
¢ 01484 722933

aite 01484 B44586
274 679404

e 01484 843163
01274 675753

01484 843681

shury 01274 818683
01484 844450

s, Marsden 01484 B44996
01274 816057

e, Linthwaite 01484 B46885

Gro, Cross Roads 01535 643681
, Todmorden 01706 818413

fuv, Bradford 01274 672644

-4

P
P
R
R
R
R

Robert 1 Wood St, S
RA 2 Cheriton Dv, Q)

P, Queensbury 01274 818887 SP 9 Brambling Dv,
j, Pellon 01422 259543 T 22b ND‘.’-I‘:_ Vw, P{
Rd, Sowerby Bdge 01422 839907 T 13 Industrial Rd,
,Beechwood 01422 831577 TE 39 Whitley Av, B
. Clayton 01274 882408 ¥V 17 Gregory Ct, Ol
Brighouse 01484 714532 W 43 Bolehill Pk, qﬂ

1U Prospect Vw,
22 Shelf Moor R
5 Amold Royd, 8
1041 Manchestel
9 5t Pauls Gro, A
10 Varley Rd, SI
156 Wilson Rd,

5 Dirker Dv, Man|
Dirker Bank Cott,
16 Holts La, Clay
46 Stones Lane,
37 Labumum Gn
160 Bacup Rd, T
35 Markfield Av,

CompSci 101 - Principles of Programming 5

Creating an object of type dict

CompSci 101 - Principles of Programming 6

dict is a Python type

= Curly braces are used for dictionaries and {} is a dictionary which
contains no key-value pairs, i.e., an empty dictionary:

def main() :
english italian = {}
print (english italian) {
print (type(english italian)) <class 'dict'>

main ()

= Another way to create an empty dictionary object is (does exactly
the same thing as the code above):

def main() : |
english italian = dict() "}
print (english italian)
print (type (english italian))

<class 'dict'>

main ()

* Note that the name, dict, is a Python type and should not be

used as a variable name.

def main() :

english italian =

main ()

dict ()

CompSci 101 - Principles of Programming 7

Creating a dictionary which contains pairs

CompSci 101 - Principles of Programming 8

Visualising the dictionary

= A dictionary object can be initialised with key-value pairs:

= Each associated pair is separated by ":' and the pairs are separated by
commas.

def main():
english italian = {"yes":"si", "bye":"ciao", "no":"no",
"maybe":"forse", "thank you":"grazie"}
print (english italian)

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}
print (contacts)

def main() :
contacts = {"Jgill":
"Syed":

print (contacts)

3456,
6754}

"James":

3456,

"yi": 7654,

main ()

main ()

{'maybe': 'forse', 'bye': 'ciao’, 'yes': 'si', 'no': 'no’, 'thank you': 'grazie'}
{'Yi': 7654, 'lill': 3456, 'Syed': 6754, 'James': 3456}

Note: the keys have to be unique but the associated values do not.

{Jill': 3456, 'Syed': 6754, 'James': 3456, 'Yi': 7654}

contacts —

“SVEd" e

7654

SR

“James" —

3456
.
3456
b S

i — .

Note: when the
key-value pairs are
printed, the order is
not
predictable.

CompSci 101 - Principles of Programming 9

The keys of the dictionary must be immutable

CompSci 101 - Principles of Programming 10

Dictionaries are not ordered structures

= The keys of a dictionary must be of a type which is immutable such
as: string, int, tuple.

* The keys of a dictionary must be unique.
= The values can be of any type and they do not need to be unique.

contacts —

3456
"James" —

D
i — 456 Remember that lists
- S are mutable and
yed” == 6154

therefore dictionary
— keys cannot be of
type list.

= Dictionary elements cannot be accessed using the index value. A
dictionary is a collection of key:value pairs.

= There is no predictable order to the key:value pairs in a dictionary
(the order may change as new pairs are added and removed).

7654
" " /
Yi A

“James" —

contacts —
3456

\xh_//
3456
S
" syed " [67 m

—

i

CompSci 101 - Principles of Programming 11

Access the value associated with a key

CompSci 101 - Principles of Programming 12

Changing the associated value in a dictionary

= The value associated with a certain key can be accessed using square
brackets (enclosing the key):

def main() :
contacts = {"Jill": 3456, "James": 3456, "Yi":
"Syed": 6754}
IIJillII
"James"

7654,

namel =
name2 =

print (namel, "is at extension:", contacts[namel])

if contacts[namel] == contacts|[name2]:
print (name2, "has the same extension")

= The associated value of a pair can be changed by assigning a
different value to the dictionary key. This replaces the old value.

def main():
contacts = {"Jill": 3456,
"Syed": 6754}
contacts["Jill"] = 7654
contacts["Yi"] = 7004

print (contacts)

"James": 3456, "Yi": 7654,

main()| f*Syed”: 6754, "Yi": 7004, "James": 3456, “Jill": 7654}

7654

i L y

contacts — " L
Jill is at extension: 3456 "ames® 3456
James has the same extension D

il

—_—

3456

usyedu = 6754

N

contacts —

7004
"y L

"James

7654

«Ji"ll —_—

"Sy'ed“

W e 3456

6754

CompSci 101 - Principles of Programming 13

Adding a pair to the dictionary

CompSci 101 - Principles of Programming 14

The number of key-value pairs in a dictionary

= Key-value pairs can be added to the dictionary using assignment
statements:

= The len() function can be used with a dictionary object to find out
how many key-value pairs are currently in the dictionary:

def main() : def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654, contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754} "Syed": 6754}
contacts["Mark"] = 7654 print (len(contacts), "in dictionary")
contacts["Jerry"] = 7004 contacts ["Yi"] = 7654
) contacts["Jerry"] = 7004
print (contacts) print (len(contacts), "in dictionary")
main ()
main ()
{"Jerry": 7004, "Syed": 6754, "Yi": 7654, “Mark®": 7654, 4 in dictionary
Note: when the key-value pairs are printed, the order is not
predictable.
CompSci 101 - Principles of Programming 15 CompSci 101 - Principles of Programming 16

Check if a key is in the dictionary

The in operator with dictionaries

= The 'in' operator can be used to check if a key is in the dictionary:

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}
name = "Jack"
if name iI contacts:

print (name, "is at extension:", contacts[name])
else:
contacts[name] = 0

if name 1l contacts:
print (name, "is at extension:", contacts[name])

print (contacts)

main ()

Jack is at extension: O
{"Jill": 3456, "James": 3456, "Yi":

7654, “Syed": 6754, "Jack": 0}

= An error is raised when accessing a key which is not in the dictionary.
Usually you test before accessing a key-value pair.

1|def main():

2 contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

3 if "Jill" in contacts: #Test first

4 print ("Jill", "-", contacts["Jill"])

5 print (contacts["Izzy"])
6 (main ()

Jill - 3456
Traceback (most recent call last):
File "LectureCode.py", line 5, in <module>
print(contacts["lzzy"])

KeyError: 'izzy'

CompSci 101 - Principles of Programming 17

Traversing the pairs in the dictionaries

CompSci 101 - Principles of Programming 18

Exercise

= Use a for...in loop to traverse (visit) each key in the dictionary:

def main() :
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}
for name in contacts:

= "Story.txt" is a text file. The following program reads the text from
the file, converts it to lower case, and creates a dictionary of all the
unique words which start with a vowel ("a", "e", "i","0", "u"). Note:
the key is the vowel and each word is added to an associated list (the
list grows as the text is processed).

print (name , "-", contacts[name])
main () Yi - 7654
I Jill - 3456
| James - 345

def main() :

def main():
vowel words dict = get dictionary from file words("Story.txt")
display results(vowel words dict)

def get dictionary from file words(filename): #complete the code
def display results(vowel words): #complete the code

main ()
contacts =|{"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754} o - ["on", "one", "old", "only", "of", "opportunity”, "official", "out"]
o TaE 1l cemastas e - [Telder®, "excited®, "elder®s™]
.Y 8 u-1[
print (key, "-", contactsl[keyl]) i - [indian®, "in", "if"]
a - ["apollo®, "astronaut®, "a", "and", "across®, "asked", "are", "astronauts®, "after”, "an"]
main ()
CompSci 101 - Principles of Programming 19 CompSci 101 - Principles of Programming 20
Exercise Exercise
Story.txt

A small trouble is like a pebble. Hold it too close to your eye, and
it fills the whole world and puts everything out of focus.

Hold it at the proper distance, and it can be examined and
properly classified. Throw it at your feet and it can be seen in its
true setting, just another tiny bump on the pathway of life.

"O‘I.t " - “of" - " on.ll]

|~

Ilell e

"o"]

vowel_word— ["eye", "everything", "examined"]

u ——

Ili“ =1 @' nin“' l.its"]

T

[llaH' “ud", llatll' “another"]

def get dictionary from file words(file name) :

Story.txt
|A small trouble is like a pebble. Hold it too close to your eye,
land it fills the whole world and puts everything out of focus.
Hold it at the proper distance, and it can be examined and

lproperly classified. Throw it at your feet and it can be seen in
Fls true setting, just another tiny bump on the pathway of life.

CompSci 101 - Principles of Programming 21

Exercise

CompSci 101 - Principles of Programming 22

Summary

def display results(vowel words dict):

D = D O

[on®, "one®, "old", "only®, "of", "opportunity®, "official”, "out"]

[“elder”, "excited”, "elder"s"]

0

[Tindian®, "in", "if"]

[“apollo®, “astronaut™, "a®, "and", "across”, “asked®, "are®, "astronauts®, "after”, "an”]

* In Python:
= dictionaries are used to store key:value pairs (items)
= a dictionary object can be created in two ways
= jtems can be added to a dictionary
= |tems can be retrieved from the dictionary
= the pairs in a dictionary can be traversed using for ... in

CompSci 101 - Principles of Programming 23

Python features used in this lecture

nn non nn non

english_italian = {"yes":"si", "bye":"ciao", "no":"no", "maybe":"forse",
"thank you":"grazie"}
english_italian["never"] = "mai"

print(english_italian["bye"])

for word in english_italian:
print(english_italian[word])

print(len(english_italian))

