
Lecture 19 – Open files, read
from files, write to files, close

files

COMPSCI 1 1
Principles of Programming

Recap
From lecture 18: complete the carry_out_transactions() function which is
passed an initial balance and a tuple of transactions (positive and negative
amounts). The function returns a tuple made up of three values: the final
balance, the sum of all the deposits and the sum of all the withdrawals.

2CompSci 101 - Principles of Programming

def carry_out_transactions(balance, transactions_tuple):
withdrawals = 0
deposits = 0
for trans in transactions_tuple:

if trans < 0:
withdrawals = withdrawals + abs(trans)

elif trans > 0:
deposits = deposits + trans

balance = balance + trans
return (balance, deposits, withdrawals)

def main():
results = carry_out_transactions(5400, (100, -400, 500,

-800, 600, -100, - 200, 50, 0, -200))

print("Balance $", results[0], ", deposits $", results[1],
", withdrawals $", results[2], sep="")

main()
Balance $4950, deposits $1250, withdrawals $1700

At the end of this lecture, students should be able to:
• understand the file system structure
• open and close a file
• write data to a file
• read data from a file

• In CompSci 101 we are dealing with text files only.

Learning outcomes
3CompSci 101 - Principles of Programming

Data which is Processed in a Python Program
Data processed in a program exists while the program is
running but it is lost when the program terminates.

To permanently store the data created in a program, we
need to save it on a physical storage device.

4CompSci 101 - Principles of Programming

import random

def main():
my_list = []
for num in range(20):

my_list.append(random.randrange(10, 100))

print(my_list)

main()

[67, 53, 35, 39, 89, 44, 73, 86, 48, 69, 74, 97, 60, 64, 72, 56, 88, 80, 39, 69]

Files
A file is a collection of bytes of information that usually
resides permanently on a disk.
The data in a file can be used later by other programs.

Accessing a file means establishing a connection between
the file and a program and moving data between the two.

We need to be able to:
• read data from a file into a program
• write data from a program to a file

5CompSci 101 - Principles of Programming

Accessing a file
When a connection has been set up between a Python
program and a file, a 'stream of data' is established between
the two:

6CompSci 101 - Principles of Programming

Accessing a file

The file system of a computer organises
files in a hierarchical (tree) structure.
• files are placed inside directories. Directories

can contain files or other directories.

A complete description of which directories to
visit in order to reach a certain file is called a
path, e.g.,

Each path to a file or a directory must be
unambiguous.

7CompSci 101 - Principles of Programming

C:/Users/Adriana/Documents/prog1.py

C:

Python3 Users

Adriana

Documents

prog1.py prog2.py input.txt

Path of a file
The file path is the '/' separated list of directories which
need to be visited in order to reach the file. For example, if
the input.txt file needs to be accessed
from inside the prog2.py program.
This file can be accessed using
the absolute path:

or using the relative path:

8CompSci 101 - Principles of Programming

'C:/Users/Adriana/Documents/input.txt'

'input.txt'

C:

Python3 Users

Adriana

Documents

prog1.py prog2.py input.txt

Binary vs text files
Python files are classified into two categories, i.e., text and
binary.

• text files can be processed using a text editor.
• binary files, e.g., images, audio, video files are designed to be read

by special applications which 'understand' their format.
• If you open a binary file using a text editor, the editor tries to

match the binary information to text characters but mostly the file
information will be gobbledygook.

9CompSci 101 - Principles of Programming

Image file displayed by a text editor

Same file displayed by an image viewer

Processing files

To use Python's built in file processing functions you must
first open the file. Once open, data within the file is
processed using functions provided by Python, and finally
the file is closed. Always remember to close the file when
you're done so that the resources can be released.

10CompSci 101 - Principles of Programming

Opening a file
The Python syntax for opening a file is:

The variable, file_variable, is now the connection between
the program and the file, and this variable can now be used
to read/write to the file.

For example:

11CompSci 101 - Principles of Programming

def main():
input_file = open("stocks.txt", "r")

main()

Note that the filename is the path of the file. In this case the file, "stocks.txt" is in the same
directory as the program, i.e., the file path used is the relative path.

file_variable = open(filename, mode)

File access modes
The Python syntax for opening a file is:

12CompSci 101 - Principles of Programming

file_variable = open(filename, mode)

'r' Opens a file for reading.
'w' Opens a file for writing.

#The following modes are not used in CompSci 101
'a' Opens a file for appending data. Data is written to the end of the file.
'rb' Opens a file for reading binary data.
'wb' Opens a file for writing binary data.

Mode Description

Closing a file
The Python syntax for closing a file is:

The close() method closes the file (i.e., releases the file
resources). After a file has been closed, access to the file
contents is no longer available until the file is opened again.

• If the mode is write mode, then any as yet unwritten content is flushed to
the file.

For example:

13CompSci 101 - Principles of Programming

def main():
input_file = open("stocks.txt", "r")
#process the file
input_file.close()

main()

file_variable.close()

Writing to a file
First, the file needs to be opened for writing:

• If the output.txt file does not exist then the open() function creates the file.
• If the output.txt file exists then the open() function erases the contents of the

file.

The syntax for writing to a file:

For example:

14CompSci 101 - Principles of Programming

def main():
output_file = open("output.txt", "w")
output_file.write("She walks in beauty, like the night\n")
output_file.write("Of cloudless climes and starry skies\n")
output_file.write("\nLord Tennyson")
output_file.close()

main()

output_file = open("output.txt", "w")

output_file.write(a_string_of_text)

Writing to a file continued

The syntax for writing to a file:

and the parameter passed to the write() function is a string.
Any numbers need to be converted using the str() function.
Any new lines need to be written to the file ("\n"). For
example,

15CompSci 101 - Principles of Programming

def main():
output_file = open("output.txt", "w")
sum_of_nums = int(input("Enter num: "))
sum_of_nums = sum_of_nums + int(input("Enter num: "))

output_file.write(str(sum_of_nums) + "\n")

output_file.close()

main()

output_file.write(a_string_of_text)

Program with 3 errors

Find the three errors in the following code. The file which
should be created by the following code is shown below:

16CompSci 101 - Principles of Programming

def three_errors(list1):
output_file = open("oops.txt", "w")
for num in list1:

output_file.write(num)

def main():
a_list1 = [2, 4, 5, 6, 8, 1]
three_errors(a_list1)

main()

Reading a file

First, the file needs to be opened for reading:

If the input.txt file does not exist then an error occurs.

The four ways characters can be read from a file:

17CompSci 101 - Principles of Programming

input_file = open("input.txt", "r")

input_file.read()

input_file.read(an_integer)

input_file.readline()

input_file.readlines()

The read() functions

The read() method returns the entire contents of the file.
This method returns a string.

The read(an_integer) method returns the specified number
of characters (a string) from the file.

18CompSci 101 - Principles of Programming

all_contents = input_file.read()

some_characters = input_file.read(an_integer)

The read() functions - examples
Both the following sections of code use the file below:

19CompSci 101 - Principles of Programming

input_file = open("poem.txt", "r")
all_contents = input_file.read()
input_file.close()
print(all_contents)

A thing of beauty is a joy for ever:
Its loveliness increases; it will never
Pass into nothingness; ...

John Keat

input_file = open("poem.txt", "r")
some_contents = input_file.read(10)
input_file.close()
print(some_contents)
print(len(some_contents))

A thing of
10

A note about the read() functions
Note that the file variable reads from whichever position in
the file it is currently pointing to, e.g.,

20CompSci 101 - Principles of Programming

input_file = open("poem.txt", "r")
some_characters = input_file.read(10)
print(some_characters)
print()

all_contents = input_file.read()
input_file.close()
print(all_contents)

A thing of

beauty is a joy for ever:
Its loveliness increases; it will never
Pass into nothingness; ...

John Keat

The readline()/readlines() methods

The readline() method returns the next line of the file. This
method returns a string. The new line character is the last
character of the string returned.

The readlines() method returns a list of the remaining lines
of the file. This method returns a list of strings. The new line
character is the last character of each string in the list
(except for the last element).

21CompSci 101 - Principles of Programming

next_line = input_file.readline()

list_of_lines = input_file.readlines()

The readline() and readlines() methods - examples
Both the following sections of code use the file below:

22CompSci 101 - Principles of Programming

input_file = open("RedHerring.txt", "r")
one_line = input_file.readline()
print(one_line)

A Red Herring: A distraction from the main issue.

input_file = open("RedHerring.txt", "r")
list_of_lines = input_file.readlines()
print(list_of_lines[2])
print(list_of_lines[4])
print(len(list_of_lines)

A red herring has a strong odour.

the smell of the herring and start

6

Note that the string read from the text contains
the newline character.

Complete the function
Complete the write_to_file() function which writes the
elements of the two parameter lists (one element from both
files per line) to the file (given by the parameter, filename).
The elements are separated by ": ".

23CompSci 101 - Principles of Programming

def write_to_file(filename, list1, list2):

def main():
a_list1 = [2, 4, 5, 6, 8, 1]
a_list2 = [123, 54, 58, 106, 87, 206]
filename = "combined_lists.txt"
write_to_file(filename, a_list1, a_list2)

main()

Assume the two files have exactly
the same number of elements and
that each element is an integer.

Show the contents of the OutBoard.txt file
24CompSci 101 - Principles of Programming

def main():
input_file = open("AboveBoard.txt", "r")
output_file = open("OutBoard.txt", 'w')
line_list = input_file.readlines()
for line in line_list:

if line[0] == 'p' or line[0] == 'A':
output_file.write(line)

input_file.close()
output_file.close()

main()

Complete the function
Complete the get_percent_vowels()
function which returns the percentage
of letters in the text (rounded to a
whole number) which are vowels.
Ignore all spaces and “\n” characters.

25CompSci 101 - Principles of Programming

def get_percent_vowels(filename):
vowels = "aeiouAEIOU"

def main():
input_f = "PoetryPrize.txt"
percent_vowels = get_percent_vowels(input_f)
print(str(percent_vowels) + "% are vowels")

main() 33% are vowels

Complete the function
The copy_file() function takes the names of an input file and
an output file, copies data from the input file to the output
file and returns a string made up of the first and last
characters in the file.

26CompSci 101 - Principles of Programming

def copy_file(filename_in, filename_out):

def main():
input_f = "FreeAdviceIn.txt"
output_f = "FreeAdviceOut.txt"
first_last_chars = copy_file(input_f, output_f)
print(first_last_chars)

main() F!

Summary
In a Python program:

• a 'data stream' can be created between the program and a file
• data can be written to a file
• data can be read from a file
• a file should be closed once the program has finished reading or

writing to the file

In CompSci 101 we are dealing with text files only.

The file system is a hierarchical structure

27CompSci 101 - Principles of Programming

Examples of Python features used in this lecture
def read_poem():

input_file = open("poem.txt", "r")
all_contents = input_file.read()
input_file.close()
print(all_contents)
print()

def write_to_file(filename, list1, list2):
output_file = open(filename, "w")
for i in range(len(list1)):

output_file.write(str(list1[i]))
output_file.write(": ")
output_file.write(str(list2[i]) + "\n")

output_file.close()

28CompSci 101 - Principles of Programming

	
	Recap
	Learning outcomes
	Data which is Processed in a Python Program
	Files
	Accessing a file
	Accessing a file
	Path of a file
	Binary vs text files
	Processing files
	Opening a file
	File access modes
	Closing a file
	Writing to a file
	Writing to a file continued
	Program with 3 errors
	Reading a file
	The read() functions
	The read() functions - examples
	A note about the read() functions
	The readline()/readlines() methods
	The readline() and readlines() methods - examples
	Complete the function
	Show the contents of the OutBoard.txt file
	Complete the function
	Complete the function
	Summary
	Examples of Python features used in this lecture

