
Lecture 8 – More practice
defining functions, functions
can call other functions, the

scope of variables

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
• write functions which perform a task
• understand that a function can call another function
• understand the scope of variable
• always use excellent function names and variable names to ensure that the purpose of

the function is clear

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
From lecture 7

§ functions which accept arguments (parameters) and return values can be defined
§ calls to functions which have been defined cause the code inside the function to be

executed
§ we must use excellent function names and variable names to ensure that the purpose

of the function is clear
§ each function performs one task

def add_yearly_interest(amount, percent_rate):
interest = amount * percent_rate / 100
interest = round(interest)
return interest + amount

def get_discount_price(price):
discount_price = price * 0.95
return discount_price

interest_amount = add_yearly_interest(3000, 5)
full_price = 345.67
final_price = get_discount_price(full_price)
print(interest_amount, final_price)

CompSci 101 - Principles of Programming 3

3150 328.3865

Syntax of a Python function
A Python function has the following syntax:

CompSci 101 - Principles of Programming 4

def function_name(comma_separated_parameters):
statements in the function
return value_to_be_returned

Function name Function parameters
colon'def'

Indentation
(either 1
tab or 4
spaces)

Return value'return' Statements in the
body of the

function.

Functions with no return statement
If a function does not need to return a result, then an optional return
statement can be used as the last statement of the function (see
lines 4 and 8).

def display_welcome(name):
message = "Welcome **" + name + "**"
print(message)
return

def display_cost(dollars, cents):
cost_str = "Cost is $" + str(dollars) + ":" + str(cents)
print(cost_str)
return

display_welcome("Sam")
print()
display_cost(15, 35) Welcome **Sam**

Cost is $15:35

1
2
3
4

5
6
7
8

9
10
11

CompSci 101 - Principles of Programming 5

Functions with no return statement
If a function does not need to return a result, then the last statement
(the return statement) can be omitted. The following program
behaves in exactly the same way as the program on the previous slide.

def display_welcome(name):
message = "Welcome **" + name + "**"
print(message)

def display_cost(dollars, cents):
cost_str = "Cost is $" + str(dollars) + ":" + str(cents)
print(cost_str)

display_welcome("Sam")
print()
display_cost(15, 35) Welcome **Sam**

Cost is $15:35

1
2
3

4
5
6

7
8
9

CompSci 101 - Principles of Programming 6

Functions with no return statement

In Python, functions which do not explicitly return any value, in fact
return the value None by default.

def display_welcome(name):
message = "Welcome **" + name + "**"
print(message)

def display_cost(dollars, cents):
cost_str = "Cost is $" + str(dollars) + ":" + str(cents)
print(cost_str)

print(display_welcome("Sam"))
print()
result = display_cost(15, 35)
print(result)

Welcome **Sam**
None

Cost is $15:35
None

1

2

3

4

5

6

7

8

9

10

See slide 14 of lecture 4:

None is a special value which can be assigned to a variable and it means that

the variable is not referencing (pointing to) any object.

CompSci 101 - Principles of Programming 7

Functions with no parameters
Functions may not need to have any parameters inside the round
brackets. If the function does not need to receive any information in
order to do its job then there will not be any parameters in its
parameter list.

def display_intro():
message = "Game of Nim"
print(message)

def display_menu():
print("1. Option 1")
print("2. Option 2")
print("3. exit")

display_intro()
print()
display_menu()

1
2
3

4
5
6
7

8
9
10

CompSci 101 - Principles of Programming 8

Game of Nim

1. Option 1
2. Option 2
3. exit

Python - indentation
Python programs are structured through indentation
• All programming languages use blocks of code and in all programming languages, it is

desirable that blocks of code be indented (this is a style requirement, not a language
requirement). This principle makes it easier to read and understand code.

• In Python, indentation of blocks of code is a language requirement not a
matter of style. All statements belonging to the same block of code have the same
indentation, i.e., the statements within a block line up vertically. The block ends at a
less indented line or at the end of
the program. If a block has to
be more deeply nested,
it is simply indented further
to the right.

CompSci 101 - Principles of Programming 9

import blah
n = blahblahblah
n = n + blahblahblah
blahblahblahblahblahblah:

blahblahblah:
c1 = blahblahblah
c2 = blahblahblah
blahblahblahblahblahblah:

blahblahblah
blahblahblah

print("The end")

1
2
3
4
5
6
7
8
9
10
11

Python - indentation
Python code is structured through indentation. Below is a diagram
showing the indentation of a Python program which contains no
function definitions.

CompSci 101 - Principles of Programming 10

Block 1

Block 2

Block 3

Block 2 continued

Block 1 continued

Python - indentation
Python code is structured through indentation. Below is a diagram
showing the indentation of a Python program which contains two
function definitions.

CompSci 101 - Principles of Programming 11

Two
function

definitions
at the top

of the
program

May have some import statements here

Block 1

def ….

def ….

Block 2

Block 3

Block 2 continued

Block 1 continued

Function body

Function body

Python – indentation and colons
The use of colons (:) is another aspect of Python program syntax
• The statement marking the beginning of an indented block ends with a colon.

def display_intro():
message = "Game of Nim"
print(message)

def display_winner_details(winner, score):
message = "*** " + winner.upper() + " (" + str(score) +

") ***"
print(message)

display_intro()
print()
display_winner_details("Joe Li", 56)

CompSci 101 - Principles of Programming 12

Game of Nim

*** JOE LI (56) ***

1
2
3

4
5

6

7
8
9

Python - colon
Each statement marking the beginning of an indented block ends
with a colon, i.e., the line before the indentation. Below is a diagram
showing the indentation of a Python program which contains no
function definitions.

CompSci 101 - Principles of Programming 13

Block 1

Block 2

Block 3

Block 2 continued

Block 1 continued

:
:
:

Python - indentation
Each statement marking the beginning of an indented block ends
with a colon , i.e., the line before the indentation. Below is a diagram
showing the indentation of a Python program which contains two
function definitions.

CompSci 101 - Principles of Programming 14

Block 1

def ….

def ….

Block 2

Block 3

Block 2 continued

Block 1 continued

Two
function

definitions
at the top

of the
program

May have some import statements

:
:
:
:

Function body

Function body

:

Python – program execution
A Python program starts executing at the first unindented statement
(line 7 in the code below).
When the Python interpreter comes across statements (other than
def or import ... or a few other keywords) which are written in the
left-most column of the program, it will start the program by
executing these statements.

CompSci 101 - Principles of Programming 15

def display_intro():
message = "Game of Nim"
print(message)

def display_winner_details(winner, score):
message = ("*** " + winner.upper() + " (" + str(score) +

") ***")
print(message)

display_intro()
print()
display_winner_details("Jo Li", 56)

1
2
3

4
5

6

7
8
9

Game of Nim

*** JO LI (56) ***

Python – program execution
The following program will execute without error but there is no
output.

def display_intro():
message = "Game of Nim"
print(message)

def display_winner_details(winner, score):
message = ("*** " + winner.upper() + " (" + str(score) +

") ***")
print(message)

1
2
3

4
5

6

The code in the two functions is looked at (parsed) by the interpreter.
You can verify this: put an error into one part of the function code (e.g., put

print(mes sage)
in line 6) and you will see that the interpreter will display the error.

CompSci 101 - Principles of Programming 16

Local variables and their scope
When you set the value of a variable inside a function, the Python interpreter

creates a local variable with that name.

In the following example, the variables: message, author, length and

symbols are local variables defined inside the display_intro() function.

In a function, local variables exist from the moment they are set (used) until the

end of the function block inside which they are used. For example the variable,

author, exists (is in scope) from line 3 to line 9.

def display_intro():
message = "Game of Nim"
author = "by Adriana Ferraro"
length = max(len(message), len(author))
symbols = "*" * length
print(symbols)
print(message)
print(author)
print(symbols)

display_intro()

1
2
3
4
5
6
7
8
9

10

Game of Nim
by Adriana Ferraro

CompSci 101 - Principles of Programming 17

Variables – out of scope
When you try to use a variable which is out of scope, the interpreter
will display an error message:

def display_intro():
message = "Game of Nim"
author = "by Adriana Ferraro"
length = max(len(message), len(author))
symbols = "*" * length
print(symbols)
print(message)
print(author)
print(symbols)

display_intro()
print(author)

1
2
3
4
5
6
7
8
9

10
11

CompSci 101 - Principles of Programming 18

Game of Nim
by Adriana Ferraro

Traceback (most recent call last):
File "OutOfScopeExample.py", line 11,

in <module>
print(author)

NameError: name 'author' is not defined

Exercise
Complete the output of the following program.

def display_intro():
message = "Game of Nim by Adriana Ferraro"
length = len(message)
symbols = "*" * length
print(symbols)
print(message)
print(symbols)

message = "bye bye!"
display_intro()
print(message)

1
2
3
4
5
6
7

8
9
10

Game of Nim by Adriana Ferraro

CompSci 101 - Principles of Programming 19

The scope of parameters
Parameters are the variables which are listed in the function header.

The scope of parameters is the same as for local variables, i.e., they exist from the
moment they are set (at the beginning of the function execution) to the end of
the function block inside which they are listed, i.e., until the end of the function
definition. In the example below the parameters, winner and score, exist from
line 1 to line 4.

def display_winner_details(winner, score):
message = "*** " + winner.upper() + " ("
message = message + str(score) + ") ***"
print(message)

display_winner_details("Joe Li", 56)

1
2
3
4

5

*** JOE LI (56) ***

CompSci 101 - Principles of Programming 20

Example with four function calls
CompSci 101 - Principles of Programming 21

*** Game of Nim: Sam is the winner ***
(66 points)

*** Game of Nim: Helen is the winner ***
(178 points)

def get_winner_message(name):
message = "*** Game of Nim: " + name + " is the winner ***"
return message

def display_winner_details(score, winner_message):
message = "(" + str(score) + " points)"
number_of_blanks = (len(winner_message) - len(message)) // 2
blanks = " " * number_of_blanks
print(winner_message)
print(blanks + message)

message = get_winner_message("Sam")
display_winner_details(66, message)
print()
message = get_winner_message("Helen")
display_winner_details(178, message)

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Functions can make calls to other functions
CompSci 101 - Principles of Programming 22

*** Game of Nim: Sam is the winner ***
(66 points)

*** Game of Nim: Helen is the winner ***
(178 points)

This program does exactly
the same job as the

program on the previous
slide

def get_winner_message(name):
message = "*** Game of Nim: " + name + " is the winner ***"
return message

def display_winner_details(winner, score):
message = "(" + str(score) + " points)"
winner_message = get_winner_message(winner)
number_of_blanks = (len(winner_message) - len(message)) // 2
blanks = " " * number_of_blanks
print(winner_message)
print(blanks + message)

display_winner_details("Sam", 66)
print()
display_winner_details("Helen", 178)

1
2
3

4
5
6
7
8
9
10

11
12
13

Exercise
Complete the get_discount() function which returns the discount
amount (a float rounded to 2 decimal places). The function is passed
two parameters, the amount and the discount rate (an integer %).
def get_discount(amount, discount_rate):

discount_message = "Discount: $" + str(get_discount(234, 5))
print(discount_message)
discount_message = "Discount: $" + str(get_discount(125, 15))
print(discount_message)

Discount: $11.7
Discount: $18.75

CompSci 101 - Principles of Programming 23

Exercise
Complete the get_discount_message() function which returns a string
made up of the rate of discount, the string "% Discount: $", and the
discount amount. The function has two parameters, the discount
amount and the rate of discount (a whole number).
def get_discount_message(discount_amt, rate):

discount_message = get_discount_message(11.7, 5)
print(discount_message)
discount_message= get_discount_message(98.55, 15)
print(discount_message) 5% Discount: $11.7

15% Discount: $98.55

CompSci 101 - Principles of Programming 24

Exercise
Complete the print_docket() function which prints the sales docket
information (the format should be as shown in the example output
shown). The function is passed two arguments, the price and the
discount rate (an int %). Your function code MUST make a call to both
the functions: get_discount() and get_discount_message().

def get_discount(amount, discount_rate):
#code from slide 23

def get_discount_message(discount_amt, rate):
#code from slide 24

def print_docket(price, percent_rate):

print_docket(234, 5)
print()
print_docket(657, 15)

Original price $234
5% Discount: $11.7
Price $222.3

Original price $657
15% Discount: $98.55
Price $558.45

CompSci 101 - Principles of Programming 25

Exercise
The following program prompts the user for a number of items to be

packaged. Each box can hold 10 items. Any left over items require an

extra box. The first 6 boxes cost $8 each and any boxes above the first

6, cost $5 each. The program executes as shown in the example

outputs below. Design the functions needed to write this program

and write the main code for this program, i.e., the"brains" of the

program.

Enter number of items: 20

Items: 20
Boxes needed: 2
Cost: $16

Enter number of items: 65

Items: 65
Boxes needed: 7
Cost: $53

Enter number of items: 36

Items: 36
Boxes needed: 4
Cost: $32 Enter number of items: 102

Items: 102
Boxes needed: 11
Cost: $73

CompSci 101 - Principles of Programming 26

Exercise
From the previous slide.

#write the main code below
items_per_box = 10

CompSci 101 - Principles of Programming 27

Enter number of items: 102

Items: 102
Boxes needed: 11
Cost: $73

Show the errors
The following program has two errors. What are the errors? Write a
correction for each error.
The desired output is shown below the program.

CompSci 101 - Principles of Programming 28

def display_winner_details(winner, score):
message = "*** " + winner.upper() + " ("
message = message + score + ") ***"
print(message)

score = score + 50
display_winner_details("Joe Li", score)
print(score)

1
2
3
4

5
6
7

*** JOE LI (50) ***
50

Summary
In a Python program:
• functions can be used to perform various tasks
• a function can make calls to other functions
• the scope of variable needs to be understood
• It is important to always use excellent function names and variable

names to ensure that the purpose of the function is clear

CompSci 101 - Principles of Programming 29

Examples of Python features used in this lecture
def display_welcome(name):
message = "Welcome **" + name + " **"
print(message)
return

def display_intro(name):
local_variable = "Game of Nim"
local_variable = local_variable + "by " + name

print(local_variable)

def display_menu():
print("1. Option 1")
print("2. Option 2")
print("3. exit")

display_menu()
display_welcome("Sam")
display_intro("Adriana Ferraro")

CompSci 101 - Principles of Programming 30

