
Lecture 7 – Defining functions

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
• define a function which accepts parameters and returns values
• make calls to functions which have been defined
• use excellent function names and variable names to ensure that the purpose of the

function is clear

Learning outcomes
CompSci 101 - Principles of Programming 2

RecapFrom lecture 6
• get user input from the keyboard
• generate a random number
• convert between types

import random

dice1 = random.randrange(1, 7)
age = random.randrange(66, 99)

user_input = input("Enter age: ")
user_age = int(user_input)

cost = input("Enter cost $")
cost = float(cost)

price = cost + 32.45
message = "Final price $" + str(price)

CompSci 101 - Principles of Programming 3

Python in-built functions
Functions are like small programs which perform useful tasks. So far
we have used several Python built-in functions, e.g., len(),
min(), round(), max(), input().

On line 1, the program makes a call to the min() function, on line 2
the program makes a call to the max() function and on line 3 the
program makes a call to the len() function.

All three functions return an integer (the result of the function code
being executed). On lines 1 and 2, the returned value is printed. On
line 3 the returned value is assigned to the variable, length.

CompSci 101 - Principles of Programming 4

print(min(5, 78, 15))
print(max(5, 78))
length = len("ABCDE")
print(length)

1
2
3
4

5
78
7

Reuse code
One of the aims when writing programs is to reuse code as much as
possible.

Whenever we make a call to a function, the code inside the function
definition is executed and the call we make is replaced by the result of
the function (i.e., replaced by the value returned by the function).

CompSci 101 - Principles of Programming 5

name = input("Enter name: ")

age = int(input("Enter age: "))

bday_month = input("Enter birthday month: ")

1

2

3

Generalise
Another aim when writing programs is to generalise the solution so it
can be used over and over with different values.

The above solution is not useful if we want to calculate the area of
rectangles of different sizes. A more general (and more useful)
solution:

CompSci 101 - Principles of Programming 6

area = 5 * 10
print("Area of a rectangle with width 5 and height 10:", area)

Area of a rectangle with width 5 and height 10: 50

width = 5
height = 10
area = width * height
output_str = ("Area of a rectangle with width " + str(width) +

" and height " + str(height) + ":”)
print(output_str, area)

Area of a rectangle with width 5 and height 10: 50

NOT A GOOD WAY
TO PROGRAM!

Exercise
What is undesirable about this code (continues onto the next slide)?

CompSci 101 - Principles of Programming 7

import random
current_score = 0
num = 1
dice1 = random.randrange(1, 7)
dice2 = random.randrange(1, 7)
current_score = current_score + dice1 + dice2
result_str = (str(num) + ". You threw a " + str(dice1) +

" and a " + str(dice2) + " Score: " + str(current_score))
print(result_str)
num = 2
dice1 = random.randrange(1, 7)
dice2 = random.randrange(1, 7)
current_score = current_score + dice1 + dice2
result_str = (str(num) + ". You threw a " + str(dice1) +

" and a " + str(dice2) + " Score: " + str(current_score))
print(result_str)

1. You threw a 4 and a 6 Score: 10
2. You threw a 3 and a 5 Score: 18
3. You threw a 3 and a 2 Score: 23
4. You threw a 6 and a 6 Score: 35

Exercise continued
CompSci 101 - Principles of Programming 8

num = 3
dice1 = random.randrange(1, 7)
dice2 = random.randrange(1, 7)
current_score = current_score + dice1 + dice2
result_str = (str(num) + ". You threw a " + str(dice1) +

" and a " + str(dice2) + " Score: " + str(current_score))
print(result_str)

num = 4
dice1 = random.randrange(1, 7)
dice2 = random.randrange(1, 7)
current_score = current_score + dice1 + dice2
result_str = (str(num) + ". You threw a " + str(dice1) +

" and a " + str(dice2) + " Score: " + str(current_score))
print(result_str)

1. You threw a 4 and a 6 Score: 10
2. You threw a 3 and a 5 Score: 18
3. You threw a 3 and a 2 Score: 23
4. You threw a 6 and a 6 Score: 35

Syntax of a Python function
A Python function has the following syntax:

CompSci 101 - Principles of Programming 9

def function_name(comma_separated_parameters):
statements in the function
return value_to_be_returned

Function name Function parameters

colon'def'

Indentation

(either 1

tab or 4

spaces)

Return value'return'
Statements in the

body of the

function.

Functions - example
The function defined below calculates the total number of minutes.
The function is passed two parameters: the hours and the minutes.

The code in a function is not executed until the function is called:

CompSci 101 - Principles of Programming 10

def get_minutes(hours, minutes):
total = hours * 60 + minutes
return total

def get_minutes(hours, minutes):
total = hours * 60 + minutes
return total

total_minutes = get_minutes(3, 44)
print("1.", total_minutes, " minutes")
print("2.", get_minutes(5, 0), " minutes")
print("3.", get_minutes(11, 540), " minutes")

1. 224 minutes
2. 300 minutes
3. 1200 minutes

1
2
3

4
5
6
7

There are three calls to the get_minutes() function (on lines 4, 6 and 7).

Functions – things to note

• In the function call (line 4), there must be the same number of arguments
passed to the function as the function requires (the expected parameters
are on line 1 inside the parentheses). The order of the arguments is
important.

• In the program, the function definition (lines 1, 2 and 3) must occur before
any of the calls to the function (line 4).

• In the function definition (lines 1, 2 and 3), the return statement is the last
statement (line 3) of the function.

CompSci 101 - Principles of Programming 11

def get_minutes(hours, minutes):
total = hours * 60 + minutes
return total

total_minutes = get_minutes(3, 44)
print(total_minutes, " minutes")

224 minutes

1
2
3

4
5

This requirement will change – see lecture 9.

Functions – the return statement

• In the function definition (lines 1, 2 and 3), the return statement is
always the last statement (line 3). When the return statement is
reached, the function stops executing returning the value (the
variable, total, in the example above) to the function call. Control
goes back to the function call (the right hand side of line 4) and the
program continues executing at line 4 followed by line 5.

• All the statements inside the function are indented (either one tab or
4 spaces). This is the body of the function.

CompSci 101 - Principles of Programming 12

def get_minutes(hours, minutes):
total = hours * 60 + minutes
return total

total_minutes = get_minutes(3, 44)
print(total_minutes, " minutes")

224 minutes

1
2
3

4
5

Functions - example
The following function (lines 1, 2, 3) converts degrees Celsius to
degrees Fahrenheit using the formula:

CompSci 101 - Principles of Programming 13

def celsius_to_f(celsius):
farenheit = celsius * 9 / 5 + 32
return farenheit

celsius = 34
print(1,"celsius",celsius,"= fahrenheit",celsius_to_f(celsius))

celsius = 15
print(2,"celsius",celsius,"= fahrenheit",celsius_to_f(celsius))

celsius = 21
print(3,"celsius",celsius,"= fahrenheit",celsius_to_f(celsius))

1 celsius 34 = fahrenheit 93.2
2 celsius 15 = fahrenheit 59.0
3 celsius 21 = fahrenheit 69.8

1
2
3

4
5

6
7

8
9

Celsius to Fahrenheit : °F=(°C × 1.8) + 32

Functions – use clear function names

• When defining functions always use self-documenting function
names and, as in all code, use self-documenting variable names. You
should always write code which is clear and easy to understand.

• All functions should be clear and aim to perform only one task.

def get_minutes(hours, minutes):
total = hours * 60 + minutes
return total

1
2
3

CompSci 101 - Principles of Programming 14

Exercise
Define the get_result1() function which is passed three whole
numbers. The function returns the sum of the two bigger numbers.

CompSci 101 - Principles of Programming 15

print("1.", get_result1(1, 2, 3))
print("2.", get_result1(11, 12, 3))
print("3.", get_result1(6, 2, 5))

1. 5
2. 23
3. 11

Exercise
Define the get_result2() function which is passed two strings. The
function returns the number of characters in the longer of the two
strings.

CompSci 101 - Principles of Programming 16

print("1.", get_result2("Flibbertigibbet", "Rigmarole"))
print("2.", get_result2("Mollycoddle", "Cat"))
print("3.", get_result2("Skullduggery", "Canoodle"))

1. 15
2. 11
3. 12

Exercise
Define the get_result3() function which is passed one string. The
function returns a string made up of the last character followed by
the first character (both in uppercase characters).

CompSci 101 - Principles of Programming 17

print("1.", get_result3("crudivorE"))
print("2.", get_result3("OrnerY"))
print("3.", get_result3("brouhaha"))

1. EC
2. YO
3. AB

Exercise
Define the required_boxes() function which is passed a total number
of items and the maximum number of items which fit into one box.
The function returns the total number of boxes required (any
leftovers always require an extra box).

CompSci 101 - Principles of Programming 18

boxes_needed1 = required_boxes(30, 16)
boxes_needed2 = required_boxes(20, 3)
boxes_needed3 = required_boxes(30, 10)

print("1.", "Boxes:", boxes_needed1)
print("2.", "Boxes:", boxes_needed2)
print("3.", "Boxes:", boxes_needed3)

1. Boxes: 2
2. Boxes: 7
3. Boxes: 3

Summary
In a Python program:
• functions which accept parameters and return values can be defined
• calls to functions which have been defined cause the code inside the function to be

executed
• we must use meaningful names and variable names to ensure that the purpose of the

function is clear
• Each function performs one task

CompSci 101 - Principles of Programming 19

Examples of Python features used in this lecture
def get_dice_total():

dice1 = random. randrange(1, 7)

dice2 = random. randrange(1, 7)

return dice1 + dice2

def celsius_to_f(celsius):

farenheit = celsius * 9 / 5 + 32

return farenheit

dice_throw = get_dice_total()

farenheit = celsius_to_f(34)

CompSci 101 - Principles of Programming 20

