
 - 1 - Assignment One

CompSci	101	-	Assignment	01

Due: 4:30pm, 15th January 2020.
Worth: This assignment is marked out of 30 and is worth 3% of your final mark.

Topics covered:
 • Arithmetic operators, printing output, manipulating string objects, string slicing ,

generating random numbers, getting user input.

The work done on this assignment MUST be your own work. Think carefully about any problems
you come across, and try to solve them yourself before you ask anyone else for help. Under no
circumstances should you use code written by another person in your assignment solution.

VERY IMPORTANT:
This assignment has two sections.
Section A is marked using Coderunner3 (20 marks). For this section you need to develop four
programs. Each program is described in Section A of this document. Once you have all 4
programs correct in CodeRunner, click the "Finish Attempt" button followed by the
"Submit all and finish" button.

Section B
Section B of this assignment (10 marks). For this section you need to develop one program. The
program is described in Section B of this document.

Submission
Section A - Questions 1, 2, 3 and 4 are submitted using CodeRunner3.
Section B – Question 5. Submit your completed Assignment 1 Question 5 Python program using
the Assignment Dropbox:

https://adb.auckland.ac.nz/Home/

NOTES:
• This assignment is marked out of 30 and is worth 3% of your final mark. Four marks out of

30 are assigned for the style of your program (program docstring, variable names, etc.).
• Only use the features taught in CompSci 101. When solving these questions you must only use

content covered in Lectures 1 to 6.

Assignment 1 Section A
Develop the Questions 1, 2, 3 and 4 programs on your computer using IDLE. Once you are happy
that your program code executes correctly, submit the program code to CodeRunner:

https://coderunner3.auckland.ac.nz/moodle/

When you press the Check button in CodeRunner, you will receive immediate feedback telling
you if you have passed all the tests for the program. You need to validate one program at a time.
When you have successfully completed all four questions and your code passes all the tests click
the "Finish Attempt" button followed by the "Submit all and finish" button.

 - 2 - Assignment One

Question 1. The Cost of Fencing and laying grass in an Elliptical area
An ellipse has two axes – a major axis and a minor axis. The longest chord of the ellipse is the
major axis. The chord perpendicular to the major axis is the minor axis which bisects the major
axis at the centre.

The following are the two formulae for calculating the area and the perimeter (distance around
the ellipse) of an ellipse:

Write a program which calculates the total cost of fencing and laying grass over a field which is in
the shape of an ellipse. The four variables below give the information needed to calculate the
total cost. The two prices are in dollars and the major and minor axes are in metres. The area
and the perimeter are both rounded to the nearest whole number and then the cost of fencing
and laying the grass is calculated. Copy the following statements into the start of your program
(you will change the values assigned to these four variables when you test your program):

fencing_per_metre = 75
grass_per_square_metre = 20
major_radius = 10
minor_radius = 5

Write your program in a file named 'YourUsernameA1Q1.py', e.g., afer023A1Q1.py.
Below are two example outputs from the completed program (using different values for the initial
four variables). Your program must give the correct output in the same format as the outputs in
the two examples below:

Once you are happy that your program code executes correctly, copy all the program code into
CodeRunner except for the initial four statements which initialise the four variables and press
the 'Check' button.

<--------------------------->

**
Cost of laying grass (157 square metres): $3140
Cost of fencing (50 metres): $3750
Total cost: $6890
**

**
Cost of laying grass (75 square metres): $1875
Cost of fencing (38 metres): $3420
Total cost: $5295
**

The first and last lines of the output are
50 stars.
The second output uses the following
initial values:
fencing_per_metre = 90
grass_per_square_metre = 25
major_radius = 8
minor_radius = 3

 - 3 - Assignment One

Question 2. Time Difference using a 24 hour clock
Write a program which calculates the difference in hours and minutes between two times. The
two times are given using a 24 hour clock, e.g., 21:34 is 34 minutes past 9pm. Copy the following
statements which initialise the two times into the start of your program (you will change the
values assigned to these four variables when you test your program).

time1_hour = 5
time1_minute = 23
time2_hour = 23
time2_minute = 14

You can assume that the second time is always later than the first time. Write your program in a
file named 'YourUsernameA1Q2.py', e.g., afer023A1Q2.py. Below are three example
outputs from the completed program (using different values for the initial four variables). Your
program must give the correct output in the same format as the outputs in the three examples
below:

Once you are happy that your program code executes correctly, copy all the program code into
CodeRunner except for the initial four statements which initialise the four variables and press
the 'Check' button.

<--------------------------->

Hours and minutes from 5:23 to 23:14 is:
 17 hours and 51 minutes.

Hours and minutes from 11:25 to 15:6 is:
 3 hours and 41 minutes.

Hours and minutes from 13:32 to 13:36 is:
 0 hours and 4 minutes.

 - 4 - Assignment One

Question 3. Print a parallelogram of the letters of a five character word
Write a program which prints a 5 letter word (I have used 5 letter names in my examples) in the
form of a parallelogram as in the examples below. Nine lines of the output print sections of the
word, the first line prints the first letter of the word, the next line prints the next two letters of the
word, etc. , the fifth line prints the whole word and the next three lines contract the word until
the last line which prints just the last letter of the word. Each of these 9 lines is indented by four
spaces and the whole nine lines are enclosed inside four rows of stars. Each row of stars is
indented by two spaces. Copy the following statement into the start of your program.

word = "MARIA"

You can assume that the word always has five letters. Write your program in a file named
'YourUsernameA1Q3.py', e.g., afer023A1Q3.py. Below are two example outputs from
the completed program (using a different value for the initial variable). Your program must give
the correct output in the same format as the outputs in the two examples below:

Once you are happy that your program code executes correctly, copy all the program code into
CodeRunner except for the initial statement which initialises the variable and press the 'Check'
button.

<--------------------------->

 M
 AR
 ARI
 ARIA
 MARIA
 ARIA
 RIA
 IA
 A

 J
 AM
 AME
 AMES
 JAMES
 AMES
 MES
 ES
 S

 - 5 - Assignment One

Question 4. Encryption/decryption program
Write a program which encrypts (or decrypts) a message. The message is always 25 letters in
length. Lines 2 and 3 of the code below ensure that the message is always 25 letters in length.

message = "Pagg rm rfomieugisanrn t!"

message = message * 25
message = message[0: 25] #Make sure the message length is exactly 25

Copy the above statements which initialise the message variable into your program. The
program uses the following encryption method. Firstly the 25 letter message is broken up into five
5 letter words, i.e., a five by five square of letters. Then the message is recreated by going down
the five by five square of letters from left to right. For example, the message
"abcdefghijklmnopqrstuvwxy" is reshaped into five rows:

abcde
fghij
klmno
pqrst
uvwxy

and then the message is reconstructed going down each column starting from the first column to the
last column: "afkpubglqvchmrwdinsxejoty"

Write your program in a file named 'YourUsernameA1Q4.py', e.g.,
afer023A1Q4.py. Below are three example outputs from the completed program (using
different values for the message variable). Your program must give the correct output in the
same format as the outputs in the three examples below:

Once you are happy that your program code executes correctly, copy all the program code into
CodeRunner except for the initial statements which initialise the variables and press the 'Check'
button.

<--------------------------->

Assignment 1 Section B (10 marks)
For Question 5, submit your completed Python programs using the Assignment Dropbox:

https://adb.auckland.ac.nz/Home/

IMPORTANT: Your program MUST include a docstring at the top of the file (containing your
name, your username and a correct description of the program) and your program MUST be
named correctly (i.e., as stated in the question).

Original message: E l ntbidjhraaoiinyyslt!
Encrypted message: Enjoy this brilliant day!

Original message: Meet at 11 in the library
Encrypted message: Ma hbetiere n at1 lr 1tiy

Original message: Ma hbetiere n at1 lr 1tiy
Encrypted message: Meet at 11 in the library

 - 6 - Assignment One

Question 5. A dice game
Write a program which implements a dice game. Name the program
'YourUsernameA1Q5.py', e.g., afer023A1Q5.py. The aim of the game is to reach a score
as close as possible to 100 (but not over 100) in three rounds. Each round consists of throwing
five random dice, the user then chooses two of the dice values where the two dice values chosen
form a two digit score which is added to the user's current total, e.g., if the user first chooses a
dice with the value 3 and then a dice with the value 5, 35 is added to the user's total (the first dice
chosen is the tens digit and the second dice chosen is the units digit). The random dice are
displayed with one space between each dice, e.g.,

Your dice: 3 5 3 4 1

and to choose the dice, the user enters a number 1, 2, 3, 4 or 5 indicating which of the five dice
they wish to choose, i.e., the position of the dice (NOT the value of the dice). This process is
repeated three times. Below is the statement which initialises the user's current score:

current_total = 0

Copy this statement into your program. Below are two example outputs using the completed
program (the user input is shown in a pink font). Your program must give the output in the same
format as the outputs in the two examples below. Note that the top string of "*" symbols has a
length of 35 and the bottom string of "*" symbols has a length of 16.

<--------------------------->

REACH 100 IN THREE ROUNDS!

Round 1
Your dice: 2 2 1 5 2
 Tens? 5
 Units? 1
Dice value: 22

Your current total: 22

Round 2
Your dice: 2 2 4 3 2
 Tens? 4
 Units? 3
Dice value: 34

Your current total: 56

Round 3
Your dice: 4 4 3 4 1
 Tens? 2
 Units? 1
Dice value: 44

Final score: 100

REACH 100 IN THREE ROUNDS!

Round 1
Your dice: 3 3 1 5 1
 Tens? 2
 Units? 4
Dice value: 35

Your current total: 35

Round 2
Your dice: 1 4 4 3 2
 Tens? 3
 Units? 4
Dice value: 43

Your current total: 78

Round 3
Your dice: 3 4 6 6 3
 Tens? 1
 Units? 5
Dice value: 33

Final score: 111
