
COMPSCI 101
Principles of Programming

Lecture 27 – Nested loops, passing mutable objects
as parameters

Learning outcomes
 At the end of this lecture, students should be able to:
 understand that the body of a loop can contain any types of

statements including another loop
 show the output of code containing nested loops
 code trace functions which have mutable objects as parameters

2

Nested loops
 The body of a for … in loop can include

any code structures (e.g. if, if … else, if …
elif, assignment statements) including other
for … in loops or while loops. These are
called nested loops.
 When nested, the inner loop iterates from the

beginning to the end for each single iteration
of the outer loop.

 There is no limit in Python as to how many
levels you can nest loops. It is usually not
more than three levels.

3

Example 1
 In order to print 5 numbers in a single line, we can do:

 In order to get 5 such lines, all we need to do is repeat the
loop 5 times. We can do that with an additional outer for
loop, which will repeatedly execute the inner for loop:
 First Attempt :

def print_numbers(n):
for num1 in range(n):

print(num1, end=" ")

0 1 2 3 4

def print_numbers(n):
for num2 in range(n):

for num1 in range(n):
print(num1, end=" ")

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

DEMO

All the numbers
in one line:

Example01.py

4

Example 1 con’t
 Example:
 Second Attempt :
 insert a new line after each sequence 0 1 2 3 4

 The outer for loop contains two statements:
 1) inner for loop
 2) print(): move cursor to the next line

def print_numbers(n):
for num2 in range(n):

for num1 in range(n):
print(num1, end=" ")

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

def print_numbers(n):
for num2 in range(n):

for num1 in range(n):
print(num1, end=" ")

print() #move cursor to next line

0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4
0 1 2 3 4

Nested Loops!

5

Example 2
 For example:

 The outer for loop contains three statements:
 1) print A
 2) inner for loop
 3) print(): move cursor to the next line

 Questions:
 how many times is "A" printed?
 how many times is "B" printed?
 how many times is "C" printed?

for num1 in range(5):
print("A", end=" ")
for num2 in range(3):

print("B", end=" ")
print()

print("C", end=" ")

A B B B
A B B B
A B B B
A B B B
A B B B
C

5 rows

3 columns
of “B”

DEMO
Example01.py

6

Exercise 1
 How many times is the word "hello" printed? What is the output

of the following code?

 How many times is the word "hello" printed? What is the output
of the following code?

def main():
for i in range(3):

for j in range(4):
print("hello")

main()

7

def main():
for i in range(3):

for j in range(4):
print("hello",end=" ")

main()

Exercise01.py

Example 3

 The outer for loop contains two statements:
 1) statement which increments number by 1
 2) inner for loop

 The inner for loop contains one statement:
 statement which prints the number

def main():
number = 0
for i in range(3):

number += 1
for j in range(4):

print(number, end = " ")
print()

main()

1 1 1 1 2 2 2 2 3 3 3 3

i j number output
0

0 0 1 1
0 1 1 1 1
0 2 1 1 1 1
0 3 1 1 1 1 1
1 0 2 1 1 1 1 2
1 1 2 1 1 1 1 2 2
1 2 2 1 1 1 1 2 2 2
1 3 2 1 1 1 1 2 2 2 2
2 0 3 1 1 1 1 2 2 2 2 3
2 1 3 …
2 2 3 …
2 3 3 …

Execute the
increment statement

three times

DEMO
Example01.py

8

Example 4

 The outer for loop contains two statements:
 1) statement which prints the number
 2) inner for loop

 The inner for loop contains one statement:
 statement which increments number by 1

def main():
number = 0
for i in range(3):

print(number, end = " ")
for j in range(4):

number += 1
print()
print(number)

main()

0 4 8
12

Move the increment
statement to the inner body!

i output j num
0 0 0
0 0 1
0 1 2
0 2 3
0 3 4
1 0 4 0 5
1 1 6
1 2 7
1 3 8
2 0 4 8 0 9
2 1 10
2 2 11
2 3 12

0 4 8
12

DEMO
Example01.py

9

Exercise 2
 What is the output after executing the following code?

 The outer loop contains _______ statements (executes ___ times)
 Inner for loop
 print()

 The inner loop contains _____ statement (executes ____ times)
 print(…)

def main():
for i in range(2, 5):

for j in range(3):
print("(", i, ",", j, ")", sep="", end=" ")

print()

main()

i j
2 0

(2,0) …

10

Exercise02.py

Nested Loop & Lists

 The outer loop contains _______ statement (executes ___ times)
 Inner for loop

 The inner loop contains _____ statement (executes ____ times)
 Append a new element onto list3

def main():
list1 = [5, 4, 3, 2]
list2 = [3, 4]
list3 = []
for num1 in list1:

for num2 in list2:
list3.append(num1 + num2)

print(list3)

main() [8, 9, 7, 8, 6, 7, 5, 6]

list1 list2 list3
5 3 8
5 4 8,9
4 3 8,9,7
4 4 8,9,7,8
3 3 8,9,7,8,6
3 4 8,9,7,8,6,7
2 3 8,9,7,8,6,7,5
2 4 8,9,7,8,6,7,5,6

Append a new
element onto list3

DEMO
Example05.py

11

Example 6:
Counting Vowel Letters

 Task:
 Complete the get_list_of_vowel_counts() function which

returns a list of the number of vowels in each word in the
parameter list.

 Examples:
 Mirabelle : 4 vowels
 John: 1 vowel
 etc

def main():
name_list = ["Mirabelle", "John", "Kelsey", …]
vowel_counts = get_list_of_vowel_counts(name_list)
print(vowel_counts)

main()

[4, 1, 2, 3, 4, 3, 4, 3, 1, 2, 3]

DEMO
Example06.py

12

Working on the inner Loop
 Your inner loop should:
 count the number of vowels in ONE word only
 Examples:

 “Mirabelle” : gives 4
 “John” : gives 1
 “Kelsey” : gives 2

For each letter in the word

• If it is in the list of vowels
• Increment the count

13

Working on the outer loop
 Your outer loop should:
 append the number of vowels in each word in the parameter list to

the output list
 In the example, the output list (vowel_counts) should contain the following

elements step by step:
 [4]
 [4, 1]
 [4,1,2]
 ...

For each word in the parameter list

• Set count = 0
• Calculate the number of vowels in the

word
• Append the number to the output list

14

The get_list_of_vowel_counts() function
 function returns a list of the number of vowels in each word

in the parameter list.

15

def get_list_of_vowel_count(word_list):

vowels = "aeiouAEIOU"

vowel_counts = []

for word _____ ____________:

count = _____

for letter in ______:

if letter in "aeiouAEIOU":

count += 1

vowel_counts += [______]

return vowel_counts

Exercise 3
 What is the output of the following code?

16

def main():

for first in range(2, 5):

for second in range(1, first):

print("(", first, ",", second, ")", sep="", end=" ")

print()

main()

Exercise03.py

Exercise 4
 What is the output of the following code?

17

def main():

total = 0

for first in range(1, 5):

total += first

for second in range(1, first):

total += second

print("Grand total:", total)

main()

Exercise04.py

Example 7
 prints lines of dots. The number of dots per line is given the

value in the dot_list,
 e.g., if the first value in dot_list is 9 then the first line printed has

nine dots, etc.

18

def print_dots(dot_list):
for num1 in dot_list:
for num in range(num1):
print(".", end = "")

print()

def main():
dot_list = [10, 3, 6, 9, 21, 11]
print_dots(dot_list)

main()

..........

...

......

.........

.....................

...........

DEMO
Example07.py

Exercise 5 (harder)
 Complete the print_dot_columns() function which prints line

of dots as shown below
 Hint: get the max of the list elements

19

def print_dot_columns (dot_list):

def main():
dot_list = [10, 3, 6, 9, 2, 7]
print_dot_columns(dot_list)

dot_list = [5, 1, 2, 4]
print_dot_columns(dot_list)

main()

.

. .

. .

. . .

. . . .

. . . .

. . . .

.

.

.

Exercise05.py

10
9
8
7
6
5
4
3
2
1

.

. .

. .

. . .

. . . .

=number of rows

max = 5
At row i, col j, if the jth num in the list > row i, print ‘.’

e.g. row 3, first col, value is 5, bigger than 3, print .
e.g. row 3, 2nd col, value is 1, less than 3, print a space

String – Immutable objects
 Every UNIQUE string you create will have its own address

space in memory.
 Strings are "immutable", i.e., the characters in a string object

cannot be changed. Whenever a string is changed in some
way, a new string object is created.

>>> a = 'foo'
>>> b = 'foo'
>>> id(a)
46065568
>>> id(b)
46065568

>>> a is b
True
>>> a == b
True
>>>

Same memory
location

word1 = "hello"
word2 = word1
print("1.", word1, word2)
print("2.", word1 is word2)

word2 = word1.upper()
print("3.", word1, word2)
print("4.", word1 is word2)

1. hello hello
2. True
3. hello HELLO
4. False

20

Lists are Mutable
 Lists are "mutable", i.e., the contents of a list object can be

changed.

list1 = [10, 20, 30, 40, 50]
list2 = list1
print("1.", list1 is list2)

list1[3] = 99
list2.append(1)

print("2.", list1)
print("3.", list2)
print("4.", list1 is list2) 1. True

2. [10, 20, 30, 99, 50, 1]
3. [10, 20, 30, 99, 50, 1]
4. True

DEMO
Example08.py

21

Passing parameters to functions
 When parameters are passed to functions:
 the parameter passed in is actually a reference to an object
 some data types are mutable, but others aren't

 Mutable objects:
 If you pass a mutable object into a function, the function gets a

reference to that same object and you can mutate it,
 but if you rebind the reference in the function, the outer scope will

know nothing about it, and after you're done, the outer reference
will still point at the original object.

 Immutable Objects:
 If you pass an immutable object to a function, you still can't rebind

the outer reference, and you can't even mutate the object.

Case 1

Case 2

Case 4
22

Passing Mutable Objects as parameters
 Case 1: Modify the list that was passed to a function:

 Since the parameter passed in is a reference to outer_list, not a copy of it,
we can modify it and have the changes reflected in the outer scope.

def try_to_change_list_contents(the_list):
print ('got', the_list)
the_list[0] = 10
print ('changed to', the_list)

outer_list = [0,1,2]
print ('before, outer_list =', outer_list)
try_to_change_list_contents(outer_list)
print ('after, outer_list =', outer_list)

before, outer_list = [0, 1, 2]
got [0, 1, 2]
changed to [10, 1, 2]
after, outer_list = [10, 1, 2]

0 0 ->10
1 1
2 2

The_list

outer_
list

both the outer_list and the
argument the_list hold

references to the same object.

DEMOExample09.py

23

Passing Mutable Objects as parameters
 Case 2: Change the reference that was passed in as a parameter

 Since the reference of the parameter was passed into the function by
value, assigning a new list to it had no effect that the code outside the
function could see.

def try_to_change_list_reference(the_list):
print ('got', the_list, 'at', id(the_list))
the_list = [10,0,0]
print ('set to', the_list, 'at', id(the_list))

outer_list = [0,1,2]
print ('before,outer_list =',outer_list,'at',id(outer_list))
try_to_change_list_reference(outer_list)
print ('after, outer_list =', outer_list)

before, outer_list = [0, 1, 2] at 37901192
got [0, 1, 2] at 37901192
set to [10, 0, 0] at 39104648
after, outer_list = [0, 1, 2]

the_list points to a new list, but
there was no way to change
where outer_list pointed.

DEMOExample10.py

24

Immutable Objects as parameters
 Case 3: Strings are immutable, so there's nothing we can do to

change the contents of the string.
 Case 4: Change the reference that was passed in as a parameter

 Since the_string parameter was passed by value, assigning a new string to
it had no effect that the code outside the function could see.

 the_string points to a new string, but there was no way to change where
outer_string pointed.

def try_to_change_string_reference(the_string):
print ('got', the_string,'at', id(the_string))
the_string = 'ten'
print ('set to', the_string,'at', id(the_string))

outer_string = "ZERO"
print ('before, outer_string =', outer_string)
try_to_change_string_reference(outer_string)
print ('after, outer_string =', outer_string)

before, outer string = ZERO
got ZERO at 40987928
set to ten at 40986024
after, outer_string = ZERO

DEMOExample11.py

25

Immutable Objects as parameters
 How do we get around this? How do we get the modified value?
 Solution: You could return the new value. This doesn't change the way

things are passed in, but does let you get the information you want back
out.

def return_a_whole_new_string(the_string):
print ('got', the_string,'at', id(the_string))
the_string = 'ten'
print ('set to', the_string,'at', id(the_string))
return the_string

outer_string = "ZERO"
print ('before, outer_string =', outer_string)
outer_string = return_a_whole_new_string(outer_string))

print ('after, outer_string =', outer_string)

before, outer_string = ZERO
got ZERO at 40463640
set to ten at 40461736
after, outer_string = ten

DEMOExample12.py

26

Exercise 6
 What is the output after executing the following code?

def function_16(list1, list2):
#print(" got ", list2)
list3 = list2
list3.append(list1[1])
list2.append(list1[0])
#print(" set to", list2)

a_list1 = [10, 9]
a_list2 = [1, 3, 4]
#print ('before', a_list2)
function_16(a_list1, a_list2)
print(a_list2)
print()

100001011100001011

010100101010100101

a_list1 a_list1 010100101 010100101

a_list2 a_list2 100001011100001011

list1 list1 010100101 010100101

list2 list2 100001011100001011

list3 list3

1

3

4

10

9

27

Exercise06.py

Exercise 7
 What is the output after executing the following code?
def function_17(list1, list2):

#print(" got ", list2)
list3 = []
list3.append(list1[1])
list3.append(list1[0])
list2 = list3
list2.append(list3[0])
#print(" list2:", list2)
return list3

a_list1 = [10, 9]
a_list2 = [1, 3, 4]
#print ('before', a_list2)
a_list1 = function_17(a_list1, a_list2)
print(a_list1, a_list2)

100001011100001011

010100101010100101
a_list1 a_list1 010100101 010100101

a_list2 a_list2 100001011100001011

list1 list1 010100101 010100101

list2 list2 100001011100001011

list3 list3

1

3

4

10

9

110001000110001000

28

Exercise07.py

Exercise 8
 What is the output after executing the following code?

29

def function_18(list1, list2):

list3 = list2

for i in range(len(list1)):

list3.append(list1[i])

list2.append(list1[i])

#print(" list3:", list3)

a_list1 = [4, 3]
a_list2 = [1, 3, 4]
function_18(a_list1, a_list2)

print(a_list1, a_list2)

Exercise08.py

Exercise 9
 What is the output after executing the following code?

30

def function_19(list1, list2):

list3 = []

list3.append(list1[1])

list3.append(list1[0])

list2.append(list3[0])

list2.append(list3[1])

return list3

a_list1 = [4, 3]

a_list2 = [1, 3, 4]

a_list2 = function_19(a_list1, a_list2)

print(a_list1, a_list2)

Exercise09.py

Summary
 The body of loops can contain any kind of statements

including other loops.
 Passing parameters which are mutable objects to functions

means that the function code may change the object's data.

31

