
CompSci 101 1

Lecture 15 – Revision Exercises
from Semester 1 Test 1

COMPSCI 1 1
Principles of Programming

CompSci101 Test 1 Tuesday 1st September at 6pm (NZ Time)
• The test will not be held on campus this semester as we are not

back on campus until after the mid-semester break.
• You will be sitting the test using your own computer in your own

environment.
• All test questions will be answered and validated using

CodeRunner3.
• Date and start time: 6pm (NZ Time) Tuesday 1st September.
• Worth 20% of your final mark.
• You will have 2.5 hours to complete the test and will finish at

8:30pm (NZ Time) .
• The test has been designed to take a well-prepared student 2 hours

but we have added a further 30 minutes to allow for any technical
issues.

COMPSCI 101 Test 1
2CompSci 101 - Principles of Programming

CompSci101 Test 1 Tuesday 1st September at 6pm (NZ Time)
• During the test:

• you must not discuss the contents of the test with any other person either in person
or online.

• You must not copy code from anyone else or from anywhere on the Internet.
• you must not share your code or discuss your code with anyone else.

• There are 12 questions and the test is out of 20 marks.
• The questions are in approximate order of difficulty with the easiest

questions at the start and the more difficult ones at the end.
• Material covered: Lectures 1 - 12 (inclusive) and Labs 1 - 4

(inclusive).
• It is recommended that you use IDLE to create a Python file to test

your code before pasting it into the CodeRunner3 answer box.
• Please remember to submit your test on CodeRunner3 before

8:30pm (NZ time) on Tuesday 1st September.

COMPSCI 101 Test 1
3CompSci 101 - Principles of Programming

• By approaching your work with honesty and integrity you
actively seek opportunities to learn something new,
deepen your understanding, and grow personally.

• The test is unsupervised, so lecturers and markers will
take extra time to detect plagiarism, cheating, and
copying.

• Cheating means that you are more likely to enter your
next course unprepared.

• We ask you to complete the tests in a way that honestly
and fairly demonstrates your knowledge and
abilities. Take pride in your work :)

COMPSCI 101 Test 1: Academic Integrity
4CompSci 101 - Principles of Programming

1 2

3 4

CompSci 101 2

We understand that these are challenging times for all of you. If you
need support or help with your studies, or face any obstacles, please
get in touch with the COMPSCI 101 teaching team as early as possible.
We can often help.

We are here to help!
5CompSci 101 - Principles of Programming

Some questions in the revision test 1 from semester 1, 2020 include
material that won’t be tested in this semester’s test (see earlier slide
for the material that will be covered). However, you have been taught
all of this material and it is good practice for your learning.

A Note Regarding Test 1 Semester 1, 2020
6CompSci 101 - Principles of Programming

Question 1
Complete the function print_greeting(name) that takes a
single parameter, the string name and prints a greeting using
this string. A couple of examples of the function being used
are shown below:

7CompSci 101 - Principles of Programming

def print_greeting(name):

def main():
print_greeting("Damir")
print_greeting("Ann")

main() Hello Damir how are you?
Hello Ann how are you?

Question 2
Complete the function do_multiplication(num1, num2) that
takes two integer parameters. The function returns the
product of these two integers. A few examples of the function
being used are shown below.

8CompSci 101 - Principles of Programming

def do_multiplication(num1, num2):

def main():
print("2 * 3 =",do_multiplication(2,3))
print("5 * 4 =",do_multiplication(5,4))

main()
2 * 3 = 6
5 * 4 = 20

5 6

7 8

CompSci 101 3

Question 3
Complete the function to_the_power_of() which prompts the
user to enter two integer values. You can assume that the user
will always enter integer values. The function returns a string
with the answer of taking the first number to the power of the
second number. A couple of examples of the function being
used are shown below:

9CompSci 101 - Principles of Programming

def to_the_power_of():

def main():
print(to_the_power_of())
print(to_the_power_of())

main()

Number 1: 2
Number 2: 6
2 to the power of 6 is 64

Number 1: 5
Number 2: 2
5 to the power of 2 is 25

Question 4
Complete the get_ordered_words(word1, word2) function which is
passed two strings as parameters. The function returns the string
which is made up of the longer of the two parameter words followed
by a space followed by the shorter of the two parameter words.
Note: you can assume that the two parameter words have different
lengths.

10CompSci 101 - Principles of Programming

def get_ordered_words(word1, word2):

def main():
print(get_ordered_words("out", "dinner"))
print(get_ordered_words("dinner", "out"))
print(get_ordered_words("bb", "a"))

main()

dinner out
dinner out
bb a

Question 5
Complete the get_number(number1, number2) function
which is passed two positive integers as parameters. The
function returns the integer made up of the first digit from
the first parameter followed by the last digit of the second
parameter.

11CompSci 101 - Principles of Programming

def get_number(number1, number2):

def main():
print(get_number(76325, 321))
print(get_number(3, 2))
print(get_number(50004, 2))

main()
71
32
52

Question 6
Complete the function print_pattern(number) which takes a
single integer parameter. The pattern printed depends on the
parameter passed and a few examples of the function being
used are shown below. You can assume that the parameter is
always a single-digit number.

12CompSci 101 - Principles of Programming

def print_pattern(number):

def main():
print_pattern(6)
print_pattern(4)

main()

666666
55555
4444
333
22
1

4444
333
22
1

9 10

11 12

CompSci 101 4

Question 7
Complete the get_list_of_four_letter_words(words_list) function which is passed
a list of strings as a parameter. The function returns a new list of all the words
from the parameter list which are four characters in length. All the words in the
returned list should be in lowercase characters.
Note 1: You MUST use the append() method to add elements to the end of the list.
Note 2: If the parameter list is empty or contains no words which are four
characters in length, the function returns an empty list.

13CompSci 101 - Principles of Programming

def get_list_of_four_letter_words(words_list):

def main():
words = get_list_of_four_letter_words(['into',

'elephant', 'room', 'the’])
print(words)
print(get_list_of_four_letter_words(['hole', 'down',

'the', 'goes', 'rabbit']))
main()

['into', 'room’]
['hole', 'down', 'goes']

Question 8
Complete the get_count_containing_9(numbers_list)
function which is passed a list of integers as a parameter. The
function returns the count of all the numbers in the
parameter list which contain the digit 9.

14CompSci 101 - Principles of Programming

def get_count_containing_9(numbers_list):

def main():
count_contain_9 = get_count_containing_9([393, 6369,
2042, 40, 9447])
print(count_contain_9)
print(get_count_containing_9([191, 45594, 1241, 9,
929]))
print(get_count_containing_9([465, 383, 282]))

main()

3
4
0

Question 9
Complete the contains_mostly_vowel_ending_words(words_list) function which
is passed a list of strings as a parameter. The function returns True if ALL the
words in the parameter list which have a length greater than 2 end with a vowel,
otherwise the function returns False.
Note: if there are no words in the parameter list which have a length greater than
2, the function returns True.

15CompSci 101 - Principles of Programming

def contains_mostly_vowel_ending_words(words_list):

vowels = "aeiouAEIOU"

def main():
print(contains_mostly_vowel_ending_words(['file’,
'barrel', 'like', 'shoo', 'sh', 'pi']))
print(contains_mostly_vowel_ending_words(['file’,
'barre', 'like', 'shoo', 'so', 'pi']))
print(contains_mostly_vowel_ending_words(['do’,
'he’, 'in', 'go', 'to', 'it’]))

main()

False
True
True

Question 10
Complete the get_unusual_average(numbers_list) function which is passed a list of
integers as a parameter. The function returns the average (rounded to the nearest whole
number) of the numbers greater than zero in the parameter list until the first element of
the list which is greater than 100 is reached, e.g. if the parameter list is [4, -8, 6, 120, -3,
20, 30] then the function returns 5, the average of 4 and 6 rounded to the nearest whole
number.
Notes. 1. If there is no number in the list which is greater than 100, the function returns
the average of all the positive numbers in the list.
2. If there are no positive numbers in the list, the function returns zero.
3. If there are no positive numbers in the list before an element greater than 100, the
function returns zero.

16CompSci 101 - Principles of Programming

def get_unusual_average(numbers_list):

def main():

result = get_unusual_average([5, 10, 15, 120, 2, 88, 22])

print(result)

print(get_unusual_average([20, 100, 60]))

print(get_unusual_average([-66, -100, 800, 20, 60]))

main()

10
60
0

13 14

15 16

CompSci 101 5

Question 11
Complete the check_password(password) function that takes a single string parameter - a
password. The function checks the password and returns True if the password is valid and
False otherwise. For a password to be valid it needs to meet the following criteria:
• Has to be at least 8 characters in length.
• Has to have at least one alphabetical character.
• Has to have at least one numerical digit.
• Has to have at least one of the following symbols: . ; ! * ?
A few examples of the function being used are shown below. Hint: you may find the string
methods isdigit() and isalpha() useful.

17CompSci 101 - Principles of Programming

def check_password(password):

symbol_list = [".",";","!","*","?"]

def main():

password = "abc012"

print("Is",password,"valid:",check_password(password))

password = "abcd0123"

print("Is",password,"valid:",check_password(password))

main()

Is abc012 valid: False
Is abcd0123 valid: False

Question 12
Complete the function fiddle_string(text) that takes a single
string parameter text, and returns a modified version of it.
How the parameter text is modified depends on how many
characters it has.
• If the parameter text has an odd number of characters,

then the characters before the middle character and the
characters after the middle character are swapped. The
middle character remains in the same place.

• If the parameter text has an even number of characters,
then the modified string is created by swapping the first
half of the string with the second half of the string.

18CompSci 101 - Principles of Programming

Question 12
You can assume that the parameter text will have at least 1
character. A couple of examples of the function being used
are shown below:

19CompSci 101 - Principles of Programming

def fiddle_string(text):

def main():
word = "Damir"
print("Original word:",word,
"\nNew word:",fiddle_string(word))
word = "barbeque"
print("Original word:",word,
"\nNew word:",fiddle_string(word))

main()

Original word: Damir
New word: irmDa
Original word: barbeque
New word: equebarb

Question 13
Complete the update_guess(answer, guess, character)
function that takes three string parameters. The first two
parameters are answer and guess. They have the same
number of characters. The third parameter character is a
string consisting of a single alphabetical character.

The update_guess() function updates the guess string so
that any instances of character in answer are revealed in
the appropriate location in guess. The update_guess()
function returns the updated guess string.

20CompSci 101 - Principles of Programming

17 18

19 20

CompSci 101 6

Question 13
A couple of examples of the update_guess() function being used are shown below:

21CompSci 101 - Principles of Programming

def update_guess(answer, guess, character):

def main():

answer = "ladder"

guess = "******"

guess = update_guess(answer, guess, "d")

print(guess)

guess = update_guess(answer, guess, "e")

print(guess)

answer = "explosion"

guess = "#########"

guess = update_guess(answer,guess,"o")

print(guess)

guess = update_guess(answer,guess,"x")

print(guess)

main()

dd
**dde*
####o##o#
#x##o##o#

Question 14
Complete the process_code(code_str) function that takes a
single string parameter code_str. The parameter code_str
consists of numerical characters arranged in a specific order
within which several numbers are hidden. The process_code()
function should add these numbers and return their total.
The parameter code_str consists of several sequences of a
single digit, between 1 and 5 inclusive, specifying the number
of subsequent digits that make up one of the numbers we are
interested in. For example if code_str was "123456" then we
have the sequences 12 and 3456. The numbers we are
interested in are thus 2 and 456, and the process_code()
function would return 458.
You can assume that a valid code string will always be passed
as a parameter.

22CompSci 101 - Principles of Programming

Question 14
A couple of examples can be seen below:

23CompSci 101 - Principles of Programming

def process_code(code_str):

def main():
code = "123456"
print("Code:", code, "Result:", process_code(code))
code = "245590000"
print("Code:", code, "Result:", process_code(code))

main()

Code: 123456 Result: 458
Code: 245590000 Result: 90045

21 22

23

