
COMPSCI 101
Principles of Programming

Lecture 24 - Using the Python interpreter, Python
sequences

Learning outcomes
 At the end of this lecture, students should be able to:
 recognise sequences and the common features of sequences
 use the interactive Python interpreter to check python statements

and functions
 use the interactive Python interpreter to look up Python help

2

Sequences: strings, lists and tuples
 Sequence types
 There are five types of sequences in Python. In CompSci 101 we

use three of these: strings, lists and tuples.

 Sequences allow you to store multiple values in an organized and
efficient fashion.

 The indices of the elements of a sequence start at 0. The indices
can be negative (to access elements from the end of the sequence).

 The order of the elements in a sequence is important.
 Each element of a sequence can be accessed using square brackets

and the index number, e.g.,

3

a_tuple = (3, 4, 8)
a_list = [3, 4, 8]
a_string = "348"

a_tuple = (3, 4, 8)
print(a_tuple[2])
middle = a_list[1]
last = a_string[-1]

Sequences continued
 Sequences can be sliced:

 The len(), min(), max() functions can be applied to sequences
(sum() can be used with tuples and lists).

4

a_tuple = (3, 4, 8, 7, 2)
a_list = [3, 4, 8, 0, 1]
a_string = "3and 4"
a_tuple2 = a_tuple[0:3:2]
a_list2 = a_list[1:3]
print(a_tuple2, a_list2, a_string[5:1:-2])

a_tuple_list = [(3, 'c'), (9,'a'), (1, 'z')]
print(len(a_tuple))
print(len(a_string))
print(max(a_tuple))
print(max(a_string))
print(len(a_tuple_list))
print(max(a_tuple_list))

5
6
8
n
3
(9, 'a')

(3, 8) [4, 8] 4d

Sequences continued
 The +, *, and 'in' operators can all be used with sequences

5

a_tuple = (3, 4) * 3 + (2, 1)
a_list = [3, 0, 1] + [6, 2] * 2
a_string = "3 & 4" * 2 + "end"
print(a_tuple)
print(a_list)
print(a_string)

print(4 not in a_tuple, 24 in a_list, "23" in a_string)

(3, 4, 3, 4, 3, 4, 2, 1)
[3, 0, 1, 6, 2, 6, 2]]
3 & 43 & 4end
False False False

Iterating through the elements of
sequences

 A for … in … loop can be used to visit each element of a
sequence, e.g.,

6

a_tuple = (3, 4, 8, 7, 2)
a_list = [3, 4, 8, 24, 1]

total = 0
for number in a_tuple:

total += number
print("1.", total)

total = 0
for number in a_list:

total += number
print("2.", total)

1. 24
2. 40

Iterating through the elements of
strings

 A for … in … loop is used to visit each character in a string
sequence. The elements of a string sequence are the
characters making up the string.

7

word = "wonderful"
number = 0

for letter in word:
if letter in "aeiou":

number += 1

print(number)

3

Iterating through the characters of a
sequence – Exercise 1

 Complete the get_num_uniques() function which returns
the number of unique elements in the sequence (including
non alphabetic characters).

8

def get_num_uniques(a_sequence):
uniques = []
for

if
uniques.

return len(uniques)

def main():
words = "Number of unique elements:"
print(words, get_num_uniques("green apple"))
print(words, get_num_uniques("abcdefg"))
print(words, get_num_uniques("abbbbbb"))
print(words, get_num_uniques((3, 4, 3, 3, 4, 6, 3, 7, 8, 4)))
print(words, get_num_uniques([3, 4, 3, 3, 4, 6, 3, 7, 8, 4]))

main()

Number of unique elements: 8
Number of unique elements: 7
Number of unique elements: 2
Number of unique elements: 5
Number of unique elements: 5

Iterating through the characters of a
string – Exercise 2

 Complete the count_longer_words() function to find the
count of words that are longer than the parameter word
from a given list of words.

9

def count_longer_words(a_list, word):
count = 0
for

if

return count

def main():
print(count_longer_words(['Double', 'letters', 'in', 'green', 'apple'], 'go'))
print(count_longer_words(['Number', 'of', 'unique', 'elements'], 'go'))

main()

4
3

Iterating through the characters of a
string – Exercise 3

 Complete the count_doubles() function which returns
the number of double letters (a letter followed by the same
letter) excluding double spaces, in the string passed as a
parameter.

10

def count_doubles(text):
count = 0
...

def main():
print("Double letters in green apple", count_doubles("green apple"))
print("Double letters in abcdefg", count_doubles("abcdefg"))
print("Double letters in abbbbbb", count_doubles("abbbbbb"))

main()
Double letters in green apple 2
Double letters in abcdefg 0
Double letters in abbbbbb 3

Compilers and interpreters
 Compilers
 Compilers convert source code into machine code and store the

machine code in a file. The machine code can then be run directly
by the operating system as an executable program (… .exe file).

 Interpreters
 Interpreters bypass the compilation process and convert and

execute the code directly statement by statement.
 Python is an interpreted language, i.e., the Python interpreter reads

and executes each statement of the Python source program
statement by statement:

 this is why even if you can have an error in the program further down, the
program executes until it hits that error.

11

Python IDLE
 IDLE (Integrated DeveLopment Environment) is an integrated

development environment for Python. This is the
development environment provided when you download
Python.

 WIKIPEDIA states "IDLE is intended to be a simple IDE and suitable
for beginners, especially in an educational environment. To that end, it is
cross-platform, and avoids feature clutter."

12
IDLE window on a MAC

IDLE provides an
interactive

environment for
checking Python

code and for
running Python

programs.

IDLE window on a PC

The Python interactive interpreter
(Python shell)

 The interactive Python interpreter
 The Python interactive interpreter makes it easy to check Python

commands.
 Open the interactive interpreter

 We will use IDLE which opens a window with the interpreter prompt:
>>>

 Once the Python interpreter has started any Python command can be
executed (at the prompt >>>)

13

>>> word = "amazing"
>>> len(word)
7
>>> word = word * 3
>>> word
'amazingamazingamazing'
>>> another_word = word[2::3]
>>> another_word
'anmiazg'
>>> word[:0:-4]
'ganmi'

Notice that the interpreter displays
the result of each statement even
though there is no print() in the

statement.

The Python interactive interpreter cont.
 The interactive Python interpreter can also be used to test

functions
 The Python interactive interpreter makes it easy to check Python

code.

14

>>> def get_result(command, what_to_do, where):

return command + " " + what_to_do + " in the " + where

>>> get_result("a", "b", "c")

'a b in the c'

>>> get_result("come", "sing", "hall")

'come sing in the hall'

>>> get_result("go", "jump", "pond")

'go jump in the pond

Notice that it is necessary to
insert a blank line to end the

function definition.

See the results of calling
the function three times
with different arguments.

The Python interactive interpreter help
 The interactive Python interpreter can also be used to get

help:

15

>>> help(str.rfind)
rfind(...)

S.rfind(sub[, start[, end]]) -> int
Return the highest index in S where substring sub is found,
such that sub is contained within S[start:end]. Optional
arguments start and end are interpreted as in slice
notation.
Return -1 on failure.

>>> help(sum)
sum(...)

sum(iterable[, start]) -> value

Return the sum of an iterable of numbers (NOT strings) plus
the value of parameter 'start' (which defaults to 0). When
the iterable is empty, return start.

None
 print statements (in the interpreter window) just print to the

interpreter window.
 A function which does not explicitly return a value, always

returns None.

16

>>> def do_little(n1, n2):
print("Sum:", n1 + n2)

>>> do_little(3, 5)
Sum: 8
>>> print(do_little(3, 5))
Sum: 8
None

Notice that it is necessary to
insert a blank line to end the

function definition.

The result of calling the function is printed.

The code in the function executes.

Summary
 strings, lists and tuples are sequences
 The operators: +, * and in can be used with sequences
 We use a for … in … to iterate through each element of a sequence
 len(), min(), max() can be used with sequences
 sum() can be used with tuples and lists
 Each element of a sequence can be accessed using the index operator.

The index can be negative (starting from the end of the sequence)
 Sequences can be sliced using [slice_start: slice_end: step]

 The Python interactive interpreter (IDLE)
 use the interactive Python interpreter to check python statements and

functions
 use the interactive Python interpreter to look up Python help

17

