
Lecture 23 – More on dictionaries, using dictionaries to manage a small file of information

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
 Delete key:value pairs from a dictionary
 Create a list of keys, values, key:value tuples from a dictionary
 Use dictionary objects to manage a small file of information

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
Dictionaries - dictionaries are used to store key:value pairs (items)
 a dictionary object can be created in two ways
 items can be added to a dictionary
 Items can be retrieved from the dictionary
 the pairs in a dictionary can be traversed using for … in

def main():
english_italian = {"yes":"si", "bye":"ciao",

"no":"no", "maybe":"forse",
"thank you":"grazie"}

english_italian["never"] = "mai"
print(english_italian["bye"])
for word in english_italian:

print(english_italian[word])
print(len(english_italian))

main()

CompSci 101 - Principles of Programming 3

ciao
mai
no
forse
ciao
si
grazie
6

Deleting a key:value pair from the dict object
The del operator is used to delete a key:value pair from the

dictionary.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
print("1.", my_dict)

del my_dict["b"]
print("2.", my_dict)

del my_dict["a"]
print("3.", my_dict)

main()

1. {'a': 4, 'b': 6, 'c': 5}
2. {'a': 4, 'c': 5}
3. {'c': 5}

CompSci 101 - Principles of Programming 4

Deleting a key:value pair from a dict object

The del operator gives an error if the key of the key:value pair being
deleted is not in the dictionary. Because of this, it is customary to
test before deleting a key:value pair.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
print("1.", my_dict)

if "b" in my_dict: #Test first
del my_dict["b"]

print("2.", my_dict)

del my_dict["z"]
print("3.", my_dict)

main()

1. {'a': 4, 'b': 6, 'c': 5}
2. {'a': 4, 'c': 5}
…. Other error information

KeyError: 'z'

CompSci 101 - Principles of Programming 5

Methods which can be used with a dict object

The keys, the values, the associations as tuples, can be obtained
from a dictionary object using the methods:

my_dict = {…}
my_dict.items() – to access all the key/value pairs as tuples
my_dict.keys() – to access all the keys
my_dict.values() – to access all the values

The elements in
these collections
can be accessed
using a for … in
loop.

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
for letter in my_dict.keys():

print(letter)
for number in my_dict.values():

print(number)
for item in my_dict.items():

print(item)
main()

b
c
a
6
5
4
('b', 6)
('c', 5)
('a', 4)

CompSci 101 - Principles of Programming 6

Methods which can be used with a dict object

When a for … in loop is used with a dictionary object, Python loops
through each key in the dictionary:

def main():
my_dict = {"a": 4, "b": 6, "c": 5}

for letter in my_dict.keys():
print(letter)

for key in my_dict:
print(key)

main()

b
c
a
b
c
a

Note that both
these loops do
the same job.

CompSci 101 - Principles of Programming 7

Methods which can be used with a dict object

Often it is useful to convert the individual keys (or values, or item
tuples) of the dictionary into lists by enclosing the keys (or values,
or item tuples) in list():

def main():
my_dict = {"a": 4, "b": 6, "c": 5}
items_list = list(my_dict.items())
keys_list = list(my_dict.keys())
values_list = list(my_dict.values())

print("items list", items_list)
print("keys list", keys_list)
print("values list", values_list)

main() items list [('a', 4), ('c', 5), ('b', 6)]
keys list ['a', 'c', 'b']
values list [4, 5, 6]

CompSci 101 - Principles of Programming 8

If you try and remove elements from a dict object while iterating
through its keys using a for … in loop, you will get an error.

Instead, create a separate list of the dictionary keys, iterate through
this list and delete any unwanted items from the dict object:

Note on deleting key-value pairs from dictionary objects
9CompSci 101 - Principles of Programming

def main():
my_dict = {"and":4,"many":2,"for":5,"very":1}
for key in my_dict:

del my_dict[key]

main() RuntimeError: dictionary changed size during iteration

def main():
my_dict = {"and":4,"many":2,"for":5,"very":1}
print(my_dict)
keys_list = list(my_dict.keys())
for key in keys_list:

del my_dict[key]
print(my_dict)

main()

{'and': 4, 'many': 2, 'for': 5, 'very': 1}
{}

Using dictionaries - Our file information

We wish to manage a small file of ratings for four films.
The film list is:

The text file, "Ratings.txt", stores the ratings made by seven people
of the four films (0 means the person didn't rate the film, 1 means
the person hated the film, 9 means they loved it):

film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]

CompSci 101 - Principles of Programming 10

Loading the information

 Firstly we read all the lines of text from the file
into a list (removing the newline character - "\n" -
from the end of each line).

def get_lines_from_file(filename):
????

def main():
film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]

number_of_films = len(film_list)
filename = "Ratings.txt"

lines_of_text = get_lines_from_file(filename)

main() ["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 11

Loading the file information into dictionaries

person_name : list of ratings dictionary, i.e., the person_name is the
key and the list of ratings is the corresponding value.

{ "Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9],
…

}

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 12

Loading the file information into dictionaries

 From all the 'lines of text' list: ,
we wish to create a dictionary: person_name : list of ratings

def get_people_ratings_dict(lines_of_text):
people_ratings = {}

return people_ratings

def main():
film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)

main() {"Mary": [2, 0, 6, 2], "Joy": [2, 8, 3, 9], …}

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

CompSci 101 - Principles of Programming 13

Loading the file information into dictionaries

person_name : list of ratings dictionary (see slides 12 and 13)
 film_title : list of ratings dictionary, i.e., the film_title is the key and

the list of seven ratings (one from each person) is the
corresponding value.

film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]

CompSci 101 - Principles of Programming 14

["Mary 2 0 6 2", "Joy 2 8 3 9", …]

{"Jaws" : [2, 2, 7, 0, 3, 9, 0]
"The Goonies" : [0, 8, 2, 2, 2, 2, 9]
"Aliens": [6, 3, 0, 3, 0, 3, 4]
"Commando" : [2, 9, 7, 8, 8, 8, 8]
}

{ "Mary": [2, 0, 6, 2],
"Joy": [2, 8, 3, 9],
…

}

Loading the information into dictionaries
 From the people dictionary ,

we wish to create another dictionary: film_title:list of ratings

def get_film_ratings_dict(film_list, people_ratings_dict):
#Jaws – get the first rating from every person
#The Goonies– get the second rating from every person, etc.
film_index = 0
film_ratings_dict = {}

return film_ratings_dict

def main():
film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list,

people_ratings_dict)

main() {'Jaws': [2, 2, 7, 0, 3, 9, 0], 'The Goonies': [0, 8, 2, 2, 2, 2, 9], …}

{"Mary": [2, 0, 6, 2], "Joy": [2, 8, 3, 9], …}

CompSci 101 - Principles of Programming 15

The two dictionaries
 So far, from the film list:

and the ratings information in the file:

we have created two dictionaries:

{
"Jaws": [2, 2, 7, 0, 3, 9, 0]
"The Goonies": [0, 8, 2, 2, 2, 2, 9]
"Aliens": [6, 3, 0, 3, 0, 3, 4]
"Commando": [2, 9, 7, 8, 8, 8, 8]
}

{
'Mary': [2, 0, 6, 2],
'John': [0, 9, 4, 8],
'Adam': [7, 2, 0, 7],
'Sam': [9, 2, 3, 8],
'Joy': [2, 8, 3, 9],
'Jo': [3, 2, 0, 8],
'Li': [0, 2, 3, 8]
}

film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]

people_ratings_dict

film_ratings_dict

CompSci 101 - Principles of Programming 16

Using the dictionaries
The user can select a person's name from the dictionary keys, see the

person's ratings list as well as the average of that person's non-zero
ratings.

def process_person_ratings_request(people_ratings_dict):
???

def main():
…
process_person_ratings_request(people_ratings_dict)

main()

{
'Mary': [2, 0, 6, 2],
'John': [0, 9, 4, 8],
'Adam': [7, 2, 0, 7],
'Sam': [9, 2, 3, 8],
'Joy': [2, 8, 3, 9],
'Jo': [3, 2, 0, 8],
'Li': [0, 2, 3, 8]
}

people_ratings_dict
John
Mary
Adam
Jo
Joy
Li
Sam
Enter name: Sam
[9, 2, 3, 8] Sam - average rating: 5.5

CompSci 101 - Principles of Programming 17

Using the dictionaries
The user can select a person from the dictionary keys and see the

person's ratings list as well as the
average of their non-zero ratings.

def process_person_ratings_request(people_ratings_dict):

def display_keys(dictionary):
???

def get_average_rating(list_of_numbers):
???

def main():
film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list, people_ratings_dict)
print("Process People-Rating Request")

process_person_ratings_request(people_ratings_dict)

{"Mary": [2, 0, 6, 2], "Joy": [2, 8, 3, 9], …}

CompSci 101 - Principles of Programming 18

Using the dictionaries
The user can select a film from a list of titles, see the film's ratings as

well as the average of all the non-zero ratings
for that film.

def process_film_ratings_request(film_list, film_ratings_dict):
???

def main():
…
process_film_ratings_request(film_list, film_ratings_dict)

main()

Process Film-Rating Request
1 Jaws
2 The Goonies
3 Aliens
4 Commando
Enter selection: 1
[2, 2, 7, 0, 3, 9, 0] Jaws - average rating: 4.6

{
"Jaws": [2, 2, 7, 0, 3, 9, 0]
"The Goonies": [0, 8, 2, 2, 2, 2, 9]
"Aliens": [6, 3, 0, 3, 0, 3, 4]
"Commando": [2, 9, 7, 8, 8, 8, 8]
}

film_ratings_dict

CompSci 101 - Principles of Programming 19

Using the dictionaries
The user can select a film from a list of titles, and see the film's

ratings as well as the average of all the non-zero ratings for that film.

def process_film_ratings_request(film_list, film_ratings_dict):

def display_numbered_list(list_of_items):
???

def get_average_rating(list_of_numbers):
#see previous code

def main():
film_list = ["Jaws", "The Goonies", "Aliens", "Commando"]
number_of_films = len(film_list)
filename = "Ratings.txt"
lines_of_text = get_lines_from_file(filename)
people_ratings_dict = get_people_ratings_dict(lines_of_text)
film_ratings_dict = get_film_ratings_dict(film_list, people_ratings_dict)
print("Process Movie-Rating Request")

process_film_ratings_request(film_list, film_ratings_dict)

{‘Jaws': [2, 2, 7, 0, 3, 9, 0], 'The Goonies': [0, 8, 2, 2, 2, 2, 9], …}

CompSci 101 - Principles of Programming 20

Summary
The del operator is used to delete an key:value pair from the

dictionary.
The keys, the values, the associations as tuples can be obtained

from a dictionary object using the methods:
my_dict.items() – to access all the key/value pairs as tuples
my_dict.keys() – to access all the keys
my_dict.values() – to access all the values

Often it is useful to convert the individual keys (or values, or item
tuples) of the dictionary into lists by enclosing the keys (or values,
or item tuples) in list()

CompSci 101 - Principles of Programming 21

Python features used in this lecture
my_dict = {"a": 4, "b": 6, "c": 5}

for letter in my_dict.keys():
print(letter)

for number in my_dict.values():
print(number)

for item in my_dict.items():
print(item)

items_list = list(my_dict.items())
keys_list = list(my_dict.keys())
values_list = list(my_dict.values())

print("items list", items_list)
print("keys list", keys_list)
print("values list", values_list)

if "b" in my_dict: #Test first
del my_dict["b"]

CompSci 101 - Principles of Programming 22

	COMPSCI 1 1�Principles of Programming
	Learning outcomes
	�Recap
	�Deleting a key:value pair from the dict object
	�Deleting a key:value pair from a dict object
	�Methods which can be used with a dict object
	�Methods which can be used with a dict object
	�Methods which can be used with a dict object
	Note on deleting key-value pairs from dictionary objects
	Using dictionaries - Our file information
	Loading the information
	Loading the file information into dictionaries
	Loading the file information into dictionaries
	Loading the file information into dictionaries
	Loading the information into dictionaries
	The two dictionaries
	Using the dictionaries
	Using the dictionaries
	Using the dictionaries
	Using the dictionaries
	Summary
	Python features used in this lecture

