COMPSCI Jel

Principles of Programming

Lecture 22 — Python dictionaries 1

CompSci 101 - Principles of Programming 2

Learning outcomes

= At the end of this lecture, students should be able to:
= understand what a dictionary is
= create a dictionary object
= add items to a dictionary
= retrieve items from a dictionary
= traverse the pairs in a dictionary

CompSci 101 - Principles of Programming 4

Python dictionaries

CompSci 101 - Principles of Programming 5

Creating an object of type dict

= A dictionary is a mapping from a key to its associated data
value.
= Each key maps to a value.
= The key has to be unique and an immutable object.

= A phone book is an example of a mapping: the key is the person's name
(plus address) and the associated value is their phone number.

You can think of a dictionary as a list [{a=5m g seis7s s
B b 5 Amold
of pairs, where the first element of el iissusss o
10 Varley Rd, Si

e 01484 843163 R 156 Wilson Rd,

Robert 1 Wood 5¢, S
RA 2 Cheriton Dv, Q
RA 5 Dirker Dy, Mar{
RB  Dirker Bank Cott,
RC 16 Holts La, Cla

the pair, the key, is used to retrieve
the second element, the
corresponding value.

ury 01274 818683
1484 844450
ns,Marsden 01484 844996
01274 816057

nihwaite 01484 846885 RD 46 Stones Lane,
0, Cross Roads 01535 643681 RW 37 Labumnum Gn
T en 01706 818413 s 160 Bacup Rd, Ty
d 01274 672644 S 35 Markfield Av,
bury 01274 818887 SP 9 Brambling Dv,

n 0‘1’.422 259543 T 22b Albert Vw, Py

FSeechwond u432 gaasry TE 33 Wnies Av &

= The key and its associated value is called a | 01274 882408 V17 Gregory .G
f‘.r:'jr-nu’,-_\ 01484 714532 W 43 B_G!Ohlll Pk, Ed

key-value pair or it can be called an item.

= Curly braces are used for dictionaries and {} is a dictionary which
contains no key-value pairs, i.e., an empty dictionary:

def main() :
english italian = {}
print (english italian) {}
print (type (english italian)) |<class 'dict'>

main ()

= Another way to create an empty dictionary object is (does exactly
the same thing as the code above):

def main() : l
english italian = dict() "}
print (english italian) <class 'dict'>

print (type(english italian)) ‘

main ()




CompSci 101 - Principles of Programming

6

dict is a Python type

CompSci 101 - Principles of Programming

Creating a dictionary which contains pairs

* Note that the name, dict, is a Python type and should not be

used as a variable name.

def main():
english italian = dict ()

main ()

= A dictionary object can be initialised with key-value pairs:

= Each associated pair is separated by ":' and the pairs are separated by
commas.

def main():
english italian = {"yes":"si", "bye":"ciao", "no":"no",
"maybe":"forse", "thank you":'"grazie"}
print (english italian)

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

print (contacts)

main ()

{'maybe': 'forse', 'bye': 'ciao’, 'yes': 'si', 'no': 'no’, 'thank you': 'grazie'}
{'Yi': 7654, 'Jill': 3456, 'Syed': 6754, 'James': 3456}

Note: the keys have to be unique but the associated values do not.

CompSci 101 - Principles of Programming

8

Visualising the dictionary

CompSci 101 - Principles of Programming

The keys of the dictionary must be immutable

def main() :
contacts = {"Jgill":
"Syed":

3456, "James":

6754}

print (contacts)

3456,

"yi": 7654,

main ()

{Jill': 3456, 'Syed': 6754, 'James': 3456, 'Yi': 7654}

7654
e N 4
S
“James" —

“Yi"
contacts —

3456
N A
3456
g
B

nsvedn e

IIJ n lll

Note: when the
key-value pairs are
printed, the order is
not
predictable.

= The keys of a dictionary must be of a type which is immutable such
as: string, int, tuple.

* The keys of a dictionary must be unique.
= The values can be of any type and they do not need to be unique.

7654
" " /-'
contacts — " .
IlJamesu R . 3456 :
D
i — 436 Remember that lists
o S are mutable and
yed” == 6754

_ therefore dictionary
S— keys cannot be of
type list.




CompSci 101 - Principles of Programming 10

Dictionaries are not ordered structures

CompSci 101 - Principles of Programming 11

Access the value associated with a key

= Dictionary elements cannot be accessed using the index value. A
dictionary is a collection of key:value pairs.

= There is no predictable order to the key:value pairs in a dictionary
(the order may change as new pairs are added and removed).

7654
" " /
Yi A
"James" — = | 3456,
\__/
3456
il —
e
"Syed"___-. 6754

contacts —

= The value associated with a certain key can be accessed using square
brackets (enclosing the key):

def main() :
contacts = {"Jill": 3456, "James": 3456, "Yi":
"Syed": 6754}
namel = "Jill"
name2 = "James"
print (namel, "is at extemsion:", contacts[namel])

if contacts[namel] == contacts|[name2]:
print (name2, "has the same extension")

7654,

main () 7654
" " ‘_’b y
contacts — b SN
Jill is at extension: 3456 "ames® T 3456
James has the same extension .

-t =

3456

"Syed" —— g5

CompSci 101 - Principles of Programming 12

Changing the associated value in a dictionary

CompSci 101 - Principles of Programming 13

Adding a pair to the dictionary

= The associated value of a pair can be changed by assigning a
different value to the dictionary key. This replaces the old value.

def main():
contacts = {"Jill": 3456, "James":
"Syed": 6754}
contacts["Jill"] = 7654
contacts["Yi"] = 7004

3456, "Yi": 7654,

print (contacts)

main ()| f=Syed”: 6754, "Yi": 7004, "James": 3456, “Jill": 7654}
7004
IIYIII / 4
contacts — ot
“James" T 3456
) 7654
IIJIIIII )

||svedu 6754

= Key-value pairs can be added to the dictionary using assignment
statements:

def main():
contacts = {"Jill": 3456, "James":
"Syed": 6754}
contacts["Mark"] = 7654
contacts["Jerry"] = 7004

3456, "Yi": 7654,

print (contacts)

main ()

{"Jerry": 7004, "Syed":
“Jill":

6754, "Yi": 7654, “Mark": 7654,
3456, "James”: 3456}

Note: when the key-value pairs are printed, the order is not
predictable.




CompSci 101 - Principles of Programming 14

The number of key-value pairs in a dictionary

CompSci 101 - Principles of Programming 15

Check if a key is in the dictionary

= The len() function can be used with a dictionary object to find out
how many key-value pairs are currently in the dictionary:

def main () :
contacts = {"Jill": 3456, "James": 3456, "Yi":
"Syed": 6754}
print (len(contacts), "in dictionary")
contacts["Yi"] = 7654
contacts["Jerry"] = 7004
print (len(contacts), "in dictionary")

7654,

main ()

4 in dictionary
5 in dictionary

= The 'in' operator can be used to check if a key is in the dictionary:

def main():
contacts = {"Jill": 3456, "James":
"Syed": 6754}
name = "Jack"

3456, "Yi": 7654,

if name 1N contacts:

print (name, "is at extension:", contacts[name])
else:
contacts|[name] = 0

if name 1N contacts:
print (name, "is at extension:", contacts[name])

print (contacts)

main ()

Jack is at extension: O

{"Jill": 3456, "James": 3456, "Yi": 7654, "Syed": 6754, "Jack": 0O}

CompSci 101 - Principles of Programming 16

The in operator with dictionaries

CompSci 101 - Principles of Programming 17

Traversing the pairs in the dictionaries

= An error is raised when accessing a key which is not in the dictionary.
Usually you test before accessing a key-value pair.

1|def main():

2 contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

3 if "Jill" in contacts: #Test first

4 print("Jill", "-", contacts["Jill"])

5 print (contacts["Izzy"])
6 (main ()

Jill - 3456
Traceback (most recent call last):
File "LectureCode.py", line 5, in <module>
print(contacts["lzzy"])

KeyError: 'izzy'

= Use a for ... in loop to traverse (visit) each key in the dictionary:

def main() :
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}
for name in contacts:

print (name , "-", contacts[name])
main () Yi- 7654
| Jill - 3456
| James - 345

def main() :

contacts =|{"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}
for key in|contacts:
print (key, "-", contactsl[keyl])

main ()




CompSci 101 - Principles of Programming 18

Exercise

CompSci 101 - Principles of Programming 19

Exercise

= "Story.txt" is a text file. The following program reads the text from
the file, converts it to lower case, and creates a dictionary of all the
unique words which start with a vowel ("a", "e", "i","0", "u"). Note:
the key is the vowel and each word is added to an associated list (the

list grows as the text is processed).

def main() :

vowel words dict = get dictionary from file words("Story.txt")
display results(vowel words dict)

def get dictionary from file words(filename): #complete the code
def display results(vowel words): #complete the code

main ()

o - [fon®, "one®", "old", "only®, "of", "opportunity®, "official", "out"]

e - [Telder®, "excited®, "elder®s™]

u-1[

i - [Tindian®, "in", "if"]

a - ["apollo®, "astronaut®, "a", "and", "across®, "asked", "are", "astronauts.", “after”,"an"]

Story.txt

A small trouble is like a pebble. Hold it too close to your eye, and
it fills the whole world and puts everything out of focus.

Hold it at the proper distance, and it can be examined and
properly classified. Throw it at your feet and it can be seen in its
true setting, just another tiny bump on the pathway of life.

"O‘I.t " - “of" - " on.ll ]

"o" 1

vowel _word— ["eye", "everything", "examined"]

Ilell e

"y __.®
Ili“ =0 @t"’ ﬂin“' Nitsll]

a —

[llal' “md", llatll' "anothef.'"]

CompSci 101 - Principles of Programming 20

Exercise

CompSci 101 - Principles of Programming 21

Exercise

def get dictionary from file words(file_ name) :

"out”,

|

of", "on"]

Story.txt
lA small trouble is like a pebble. Hold it too close to your eye,
land it fills the whole world and puts everything out of focus.
Hold it at the proper distance, and it can be examined and

iproperly classified. Throw it at your feet and it can be seen in
Iils true setting, just another tiny bump on the pathway of life.

def display results(vowel words dict):

D = D O

[Fon®, “one", "old", “only®", "of", “opportunity”, “official®, "out"]
[“elder®™, “excited®, "elder®s']
0

[Tindian®, "in", "if"]
[“apollo®, “astronaut-®,

"a®, "and", "across", "asked", “are", “astronauts.", "after”,"an"]




CompSci 101 - Principles of Programming 22

Summary

CompSci 101 - Principles of Programming 23

Python features used in this lecture

* In Python:
= dictionaries are used to store key:value pairs (items)
= a dictionary object can be created in two ways
= jtems can be added to a dictionary
= |tems can be retrieved from the dictionary
= the pairs in a dictionary can be traversed using for ... in

non nn non

english_italian = {"yes":"si", "bye":"ciao", "no":"no", "maybe":"forse",
"thank you":"grazie"}
english_italian["never"] = "mai"

print(english_italian["bye"] )

for word in english_italian:
print(english_italian[word])

print(len(english_italian))




