
Lecture 22 – Python dictionaries 1

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
 understand what a dictionary is
 create a dictionary object
 add items to a dictionary
 retrieve items from a dictionary
 traverse the pairs in a dictionary

Learning outcomes
CompSci 101 - Principles of Programming 2

Python dictionaries
A dictionary is a mapping from a key to its associated data

value.
 Each key maps to a value.
 The key has to be unique and an immutable object.
 A phone book is an example of a mapping: the key is the person's name

(plus address) and the associated value is their phone number.

 The key and its associated value is called a
key-value pair or it can be called an item.

You can think of a dictionary as a list
of pairs, where the first element of
the pair, the key, is used to retrieve
the second element, the
corresponding value.

CompSci 101 - Principles of Programming 4

Creating an object of type dict
Curly braces are used for dictionaries and {} is a dictionary which

contains no key-value pairs, i.e., an empty dictionary:

Another way to create an empty dictionary object is (does exactly
the same thing as the code above):

def main():
english_italian = {}
print(english_italian)
print(type(english_italian))

main()

{}
<class 'dict'>

def main():
english_italian = dict()
print(english_italian)
print(type(english_italian))

main()

{}
<class 'dict'>

CompSci 101 - Principles of Programming 5

dict is a Python type
Note that the name, dict, is a Python type and should not be

used as a variable name.

def main():

english_italian = dict()

main()

CompSci 101 - Principles of Programming 6

Creating a dictionary which contains pairs
 A dictionary object can be initialised with key-value pairs:
 Each associated pair is separated by ':' and the pairs are separated by

commas.

def main():
english_italian = {"yes":"si", "bye":"ciao", "no":"no",

"maybe":"forse", "thank you":"grazie"}
print(english_italian)

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

print(contacts)

main()
{'maybe': 'forse', 'bye': 'ciao', 'yes': 'si', 'no': 'no', 'thank you': 'grazie'}
{'Yi': 7654, 'Jill': 3456, 'Syed': 6754, 'James': 3456}

CompSci 101 - Principles of Programming 7

Note: the keys have to be unique but the associated values do not.

Visualising the dictionary

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}

print(contacts)

main() {'Jill': 3456, 'Syed': 6754, 'James': 3456, 'Yi': 7654}

CompSci 101 - Principles of Programming 8

Note: when the
key-value pairs are

printed, the order is
not

predictable.

The keys of a dictionary must be of a type which is immutable such
as: string, int, tuple.
The keys of a dictionary must be unique.
The values can be of any type and they do not need to be unique.

The keys of the dictionary must be immutable
CompSci 101 - Principles of Programming 9

Remember that lists
are mutable and

therefore dictionary
keys cannot be of

type list.

Dictionary elements cannot be accessed using the index value. A
dictionary is a collection of key:value pairs.
There is no predictable order to the key:value pairs in a dictionary

(the order may change as new pairs are added and removed).

Dictionaries are not ordered structures
CompSci 101 - Principles of Programming 10

Access the value associated with a key
The value associated with a certain key can be accessed using square

brackets (enclosing the key):
def main():

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

name1 = "Jill"
name2 = "James"

print(name1, "is at extension:", contacts[name1])
if contacts[name1] == contacts[name2]:

print(name2, "has the same extension")

main()

Jill is at extension: 3456
James has the same extension

CompSci 101 - Principles of Programming 11

Changing the associated value in a dictionary
The associated value of a pair can be changed by assigning a

different value to the dictionary key. This replaces the old value.
def main():

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

contacts["Jill"] = 7654
contacts["Yi"] = 7004
print(contacts)

main() {'Syed': 6754, 'Yi': 7004, 'James': 3456, 'Jill': 7654}

CompSci 101 - Principles of Programming 12

Adding a pair to the dictionary
Key-value pairs can be added to the dictionary using assignment

statements:

.

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}
contacts["Mark"] = 7654
contacts["Jerry"] = 7004

print(contacts)

main()

{'Jerry': 7004, 'Syed': 6754, 'Yi': 7654, 'Mark': 7654,
'Jill': 3456, 'James': 3456}

CompSci 101 - Principles of Programming 13

Note: when the key-value pairs are printed, the order is not
predictable.

The number of key-value pairs in a dictionary
The len() function can be used with a dictionary object to find out

how many key-value pairs are currently in the dictionary:
def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}
print(len(contacts), "in dictionary")
contacts["Yi"] = 7654
contacts["Jerry"] = 7004
print(len(contacts), "in dictionary")

main()

4 in dictionary
5 in dictionary

CompSci 101 - Principles of Programming 14

Check if a key is in the dictionary
The 'in' operator can be used to check if a key is in the dictionary:
def main():

contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,
"Syed": 6754}

name = "Jack"

if name in contacts:
print(name, "is at extension:", contacts[name])

else:
contacts[name] = 0

if name in contacts:
print(name, "is at extension:", contacts[name])

print(contacts)

main()

Jack is at extension: 0
{'Jill': 3456, 'James': 3456, 'Yi': 7654, 'Syed': 6754, 'Jack': 0}

CompSci 101 - Principles of Programming 15

The in operator with dictionaries
 An error is raised when accessing a key which is not in the dictionary.

Usually you test before accessing a key-value pair.

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}
if "Jill" in contacts: #Test first

print("Jill", "-", contacts["Jill"])

print(contacts["Izzy"])
main()

Jill - 3456
Traceback (most recent call last):

File "LectureCode.py", line 5, in <module>
print(contacts["Izzy"])

KeyError: 'Izzy'

1
2

3
4

5
6

CompSci 101 - Principles of Programming 16

Traversing the pairs in the dictionaries
Use a for … in loop to traverse (visit) each key in the dictionary:

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}
for key in contacts:

print(key, "-", contacts[key])

main()

def main():
contacts = {"Jill": 3456, "James": 3456, "Yi": 7654,

"Syed": 6754}
for name in contacts:

print(name , "-", contacts[name])

main()

Same code

Yi - 7654
Jill - 3456
Syed - 6754
James - 345

CompSci 101 - Principles of Programming 17

Exercise
 "Story.txt" is a text file. The following program reads the text from

the file, converts it to lower case, and creates a dictionary of all the
unique words which start with a vowel ("a", "e", "i","o", "u"). Note:
the key is the vowel and each word is added to an associated list (the
list grows as the text is processed).

o - ['on', 'one', 'old', 'only', 'of', 'opportunity', 'official', 'out']
e - ['elder', 'excited', "elder's"]
u - []
i - ['indian', 'in', 'if']
a - ['apollo', 'astronaut', 'a', 'and', 'across', 'asked', 'are', 'astronauts.', 'after','an']

CompSci 101 - Principles of Programming 18

def main():
vowel_words_dict = get_dictionary_from_file_words("Story.txt")
display_results(vowel_words_dict)

def get_dictionary_from_file_words(filename): #complete the code
def display_results(vowel_words): #complete the code

main()

Exercise
CompSci 101 - Principles of Programming 19

A small trouble is like a pebble. Hold it too close to your eye, and
it fills the whole world and puts everything out of focus.
Hold it at the proper distance, and it can be examined and
properly classified. Throw it at your feet and it can be seen in its
true setting, just another tiny bump on the pathway of life.

Story.txt

Exercise
def get_dictionary_from_file_words(file_name):

CompSci 101 - Principles of Programming 20

Exercise
def display_results(vowel_words_dict):

o - ['on', 'one', 'old', 'only', 'of', 'opportunity', 'official', 'out']
e - ['elder', 'excited', "elder's"]
u - []
i - ['indian', 'in', 'if']
a - ['apollo', 'astronaut', 'a', 'and', 'across', 'asked', 'are', 'astronauts.', 'after','an']

CompSci 101 - Principles of Programming 21

Summary
 In Python:
 dictionaries are used to store key:value pairs (items)
 a dictionary object can be created in two ways
 items can be added to a dictionary
 Items can be retrieved from the dictionary
 the pairs in a dictionary can be traversed using for … in

CompSci 101 - Principles of Programming 22

Python features used in this lecture
english_italian = {"yes":"si", "bye":"ciao", "no":"no", "maybe":"forse",

"thank you":"grazie"}
english_italian["never"] = "mai"
print(english_italian["bye"])

for word in english_italian:
print(english_italian[word])

print(len(english_italian))

CompSci 101 - Principles of Programming 23

	COMPSCI 1 1�Principles of Programming
	Learning outcomes
	Python dictionaries
	�Creating an object of type dict
	�dict is a Python type
	Creating a dictionary which contains pairs
	Visualising the dictionary
	The keys of the dictionary must be immutable
	Dictionaries are not ordered structures
	Access the value associated with a key
	Changing the associated value in a dictionary
	Adding a pair to the dictionary
	The number of key-value pairs in a dictionary
	Check if a key is in the dictionary
	The in operator with dictionaries
	Traversing the pairs in the dictionaries
	Exercise
	Exercise
	Exercise
	Exercise
	Summary
	Python features used in this lecture

