

Lecture 6 – Getting user input,

converting between types, generating random numbers

CompSci 101 - Principles of Programming

_

Learning outcomes

At the end of this lecture, you will know how to:

- get the user input from the keyboard
- generate a random number
- convert between types

Recap

From lecture 5

- use dot notation when using string methods with string instances
- use string methods: upper(), lower(), strip(), find(), rfind()
- use the inbuilt functions: min(), max(), round()

```
phrase = "When in doubt, mumble."
pos1 = phrase.find("in")
pos2 = phrase.rfind("mumb")
pos3 = phrase.rfind("ni")
                                                        1. Total: 19
total = pos1 + pos2 + pos3
                                                        2. whe
print("1. Total:", total)
                                                        3. 33
phrase = phrase.lower()
                                                        4. 32.66
print("2.", phrase[:3])
smallest = min(32.7, 56.4, 3, -1.1, 56.99, -1.2)
largest = max(32.7, 56.4, 3, -1.1, 56.99, -1.2)
num1 = 32.657123
print("3.", round(num1))
print("4.", round(num1, 2))
```

CompSci 101 - Principles of Programming

Getting input from the user

We have already seen how the print() function is used to print to the standard output. We would now like our programs to be able to get input from the user from the keyboard (the standard input).

The **input**() function is used to get information from the user.

This function displays the prompt, waits for the user to type their information and, as soon as the user presses the 'Enter' key, the input() function returns the information typed by the user (to the variable on the left of the assignment operator).

```
user name = input("Enter name: ")
colour = input("Enter colour: ")
user_word = input("Enter word: ")
print(user_name, "entered", colour, "and the word", user_word)
```

Enter name: Adriana Enter colour: magenta Enter word: parola

Adriana entered magenta and the word parola

The user input is shown in a pink colour

Getting input from the user

The **input**() function can be used with no argument (nothing inside the round brackets) in which case no prompt is displayed.

The input() function always **returns a string**. The end of line character is not returned as part of the returned string.

```
user_number = input("Enter number: ")
user_input = input()
print("You entered", user_number, "and then", user_input)
```

```
Enter number: 98 in a pink colour

???

You entered 98 and then ???
```

CompSci 101 - Principles of Programming

_

Exercise

Complete the output if the user enters the number 54 when prompted:

```
user_number = input("Enter number: ")
print(user_number * 2, user_number * 3, user_number * 4)
```

```
Enter number: 54
```

Random numbers

Quite often, in our programs, we need to generate random numbers, e.g. for games and simulations.

The random module contains a function, **randrange()**, which can be used to generate a random number. In order to use this function we need to import the random module into our program (just as we did when we wanted to use the functions defined in the math module -math.sin(), math.cos(), ...).

Whenever we need to generate a random number in a program, the first line of the program will be the statement which imports the random module:

```
import random
```

CompSci 101 - Principles of Programming

8

Random numbers

The, **randrange()** function requires two values defining the range of the random number to be generated:

the first number is the lowest number which can be generated and the second number is one bigger than the biggest number to be generated, e.g. random.randrange(5, 10) has an equal chance of generating 5, 6, 7, 8 or 9.

```
import random
dice1 = random.randrange(1, 7)
dice2 = random.randrange(1, 7)
print("You threw", dice1, "and a", dice2)
```

```
You threw 4 and a 1
```

Exercise

Complete the following program so that it prompts the user for their first name. The program removes a random letter from the first name and prints the resulting name.

```
import random
first_name = input("Enter name: ")

print(name)
```

```
Enter name: Eric

Tic

Adriaa

Enter name: Eric

Tic

Enter name: Jerry

Jery
```

CompSci 101 - Principles of Programming

10

Random numbers

The randrange() function has an optional step argument: random.randrange(start, end, step)

When the step argument is omitted the default step is 1.

The step argument dictates which random numbers are generated within the range (the step is the amount between each random number generated), e.g.

Exercise

Give the smallest and the largest possible random number which can be generated by the following four statements:

```
import random

print("1.", random.randrange(4, 17, 3))

print("2.", random.randrange(-1, 7, 2))

print("3.", random.randrange(100, 700, 2))

print("4.", random.randrange(50, 100, 10))
```

CompSci 101 - Principles of Programming

12

Ooops!

The following code causes an error:

```
1 age = input("Enter age: ")
2 years_to_go = 100 - age
3 print("Big birthday coming up in ", years_to_go, "years!")
```

```
Enter age: 54
File "LectureCode.py", line 2, in <module>
    years_to_go = 100 - age
TypeError: unsupported operand type(s) for -: 'int' and 'str'
```

What does this error message mean?

Converting between types

The subtraction operator (–) has no meaning if one of the operands is a string. We want to find a way of converting a string containing just digits into a number.

The **int**() function converts a string containing characters which are digits into the corresponding integer value.

```
age = input("Enter age: ")
age = int(age)
years_to_go = 100 - age
print("Big birthday coming up in", years_to_go, "years!")

Enter age: 54
Big birthday coming up in 46 years!
```

Note that the code on lines 1 and 2 can be combined into one line:

```
age = int(input("Enter age: "))
```

CompSci 101 - Principles of Programming

14

Converting between types

Other functions which can be used to convert between types:

String concatenation requires that the two operands be strings:

Converting between types

The conversion has to be legal. Below are two illegal attempts to convert values using int():

```
number = int("12 34")

File "LectureCode.py", line 1, in <module>
    number = int("12 34")

ValueError: invalid literal for int() with base
10: '12 34'

number = int("12.34")

File "LectureCode.py", line 1, in <module>
    number = int("12.34")

ValueError: invalid literal for int() with base
10: '12.34'
```

Note that converting a string which contains no decimal point into a float is fine:

```
number = float("12")
print(number)
```

CompSci 101 - Principles of Programming

16

Truncating a Floating Point Number

A floating point number can be truncated into the whole number part using int():

```
print("1:", int(12.34))
print("2:", int(12.799))
print("3:", int(12.999))
print("4:", int(2.5))
print("5:", int(3.5))

print("6:", int(-6.213))
print("7:", int(-12.94))
```

```
1: 12
2: 12
3: 12
4: 2
5: 3
6: -6
7: -12
```

```
import math
print("Truncating is not the same as flooring the number")
print("8:", math.floor(-6.213))
print("9:", math.floor(-12.94))
```

```
Truncating is not the same as flooring the number 8: -7
9: -13
```

CompSci 101 - Principles of Programming

18

Line continuation

The preferred way of line continuation (breaking long lines of code over multiple lines) is to use parentheses, brackets and braces.

```
1     user_dice = input("Enter dice throw: ")
2     comp_dice = random.randrange(1, 7)
There will be other
examples of this in later lectures.

3     message = ("Your dice: " + user_dice + ", computer dice: " + str(comp_dice))
4     print(message)
```

A backslash character at the end of a line of code also can be used to indicate that the statement continues on the next line, e.g.

Exercise

Complete the following program which prompts the user once for the total of 4 dice rolls, the programs calculates the sum of four random dice throws, and outputs the four dice values and the difference between the user guess and the dice throwing simulation total (see

```
Enter sum (4 dice): 12
example outputs):
                                          The dice: (3 4 3 2)
 prompt_sum = "Enter sum (4 dice): "
                                          Your total: 12 Dice total: 12
                                          You are out by: 0
 dice total = 0
 the dice = "("
                                       Enter sum (4 dice): 15
                                       The dice: (3 1 4 6)
                                       Your total: 15 Dice total: 14
                                       You are out by: 1
                                          Enter sum (4 dice): 12
                                          The dice: (6 3 6 4)
                                          Your total: 12 Dice total: 19
                                          You are out by: 7
 print("The dice:",
                                  , "Dice total:",
 print("Your total:",
                                                              )
 print("You are out by:",
                                                      )
```

Summary

In a Python program:

- the input() function is used to get user input from the keyboard
- a random number can be generated using random.randrange(...)
- we can convert between types using str(), int(), float()

CompSci 101 - Principles of Programming

Examples of Python features used in this lecture

```
dice1 = random.randrange(1, 7)
age = random.randrange(66, 99)
even_number = random.randrange(50, 99, 2)
tens = random.randrange(50, 101, 10)

user_input = input("Enter age: ")
age = int(user_input)

cost = input("Enter cost $")
cost = float(cost)

price = 32.45
message = "Final price $" + str(price)
```

Exercise

Complete the following program so that it prints the total tax and the net pay rounded to a whole number. The first \$14000 is not taxed. The next amount up to \$38500 is taxed at 24% and the rest is taxed at 34%.

```
Salary: $54000
salary = 54000
                                Amount to be taxed at: 24%: $24500
                                Tax at rate1: $5880
no tax boundary = 14000
                                Amount to be taxed at: 34%: $15500
rate1_boundary = 38500
                                Tax at rate2: $5270
rate1 = 0.24
                                Total tax: $11150
rate2 = 0.34
                                Net pay: $42850
#Print the information
print("======"")
print("Total tax: $", total_tax, sep = "")
print()
print("Net pay: $", net_pay, sep = "")
print("======="")
```