
Lecture 3 – Evaluating expressions, modulus
and integer division operators, docstring and
comments, the math module, developing a

program in steps

COMPSCI 1 1
Principles of Programming

At the end of this lecture, you will know how to:
• import modules and use the functions defined in the module
• use the floor division and the modulus operators
• include a docstring at the top of a program and use comments

At the end of this lecture, you will understand:
• that the use of self-documenting code makes a program easier to read and understand
• that all expressions evaluates to one single value
• the order of operations which are used to evaluate an algebraic expression
• how to develop a program in steps

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
From lecture 2
• perform calculations using standard arithmetic operators
• use variables to store values
• describe differences between int and float types
• print numbers and strings to standard output

CompSci 101 - Principles of Programming 3

amount_to_convert = 500
nz_to_aus_rate = 0.95

nz_dollars = amount_to_convert
aus_from_nz = nz_dollars * nz_to_aus_rate
print("NZ $", nz_dollars, " = ", "AUS $", aus_from_nz, sep = "")
aus_dollars = amount_to_convert
aus_to_nz_rate = 1 / nz_to_aus_rate
nz_from_aus = aus_dollars * aus_to_nz_rate

print("AUS $", aus_dollars, " = ", "NZ $", nz_from_aus, sep = "")

NZ $500 = AUS $475.0
AUS $500 = NZ $526.3157894736842

Literals, variables and expressions
Literals are the actual values which can be stored in the program memory, e.g.
• 34
• -67.5
• "a particular string"

Variables can be assigned any literal value (or expressions). Variables are used to refer
to (point to) a single piece of information, e.g.
• result = 567
• final_result = result + 45
• phrase = "a particular string"
• phrase = 'Please tell me more'
• first_name = "Izzy"

Expressions are made up of literal values and variables. Expressions always evaluate to
a single value. The right hand side of the assignment operator is an expression, e.g.
• number = 3
• final_result = 567 + 16 ** number
• final_result = final_result + number * 5 / 7

CompSci 101 - Principles of Programming 4

Docstrings
A docstring is a special kind of string (text) used to provide
documentation. A docstring:
• appears at the top of every CompSci 101 program,
• three double-quotes are used to surround the docstring,
• all programs should include a docstring at the top of the program,
• the docstring contains the author and a description of what the program does.

CompSci 101 - Principles of Programming 5

"""
Program which calculates the area of a circle.
Author: Adriana Ferraro
"""

radius = 10
area = 3.14159265359 * radius ** 2
print("Area of circle", area)

In general the format of a Python program is:

"""
Calculates the area of a rectangle.
Author: Adriana Ferraro
"""
width = 3.56
height = 8.4

area = width * height

print("Area of rectangle", area)

Skeleton of a Python program

docstring

initialisation

calculation

output

Area of rectangle 29.904

CompSci 101 - Principles of Programming 6

Every Python program is stored in a file which has .py at the end of the file name (the file
extension), e.g. CalculateArea.py, CompoundInterest.py

Comments
As well as the docstring describing the purpose of the program at the
top of ALL our programs, comments can be added to the program
code. A programming comment is a note to other programmers who
need to understand the code.
• Anything between a # (hash) and the end of the line is a comment and is ignored

by the interpreter.

"""
Converts a length in inches to a length in centimetres.
Author: Adriana Ferraro
"""
cm_per_inch = 2.54
length_in_inches = 142
length_in_cm = length_in_inches * cm_per_inch
print("Length", length_in_cm)

CompSci 101 - Principles of Programming 7

#Change the value of length_in_inches here

Length 360.68

Use self documenting code
Add comments sparingly to explain code that is difficult, or to tell other
programmers something they need to know about the code.
It is always important to use good descriptive variable names.
The program below does the same job as the program on the previous
slide but it uses very poor variable names which makes the program
difficult to read and difficult to understand.

"""
Author: Not Adriana Ferraro
"""

a = 2.54
b = 142
c = b * a

print("Length", c)

Length 360.68

CompSci 101 - Principles of Programming 8

Python libraries
Python has libraries of code which contain definitions and functions
which perform useful tasks and calculations. The files in these libraries
are called modules. The name of a module is the name of the file
without the .py extension.
The math module contains many useful math functions and constants,
e.g. math.sin(), math.cos(), math.pow(), math.sqrt(), math.floor(), …
In order to be able to use the functions of a module, we need to import
the module. Importing a module means that we can then use all the
functions defined inside that module, e.g.

CompSci 101 - Principles of Programming 9

"""Calculates the radius of a circle, given the area.
Author: Adriana Ferraro

"""
import math
area = 221.67
radius = math.sqrt(area / math.pi)
print("Radius of circle", radius)

Radius of circle 8.399985266079987

www.python.org
The following website contains documentation about all the
Python modules: https://docs.python.org/3/py-modindex.html

CompSci 101 - Principles of Programming 10

Expressions – order of operations
Expressions containing numbers are evaluated in the same way as in
mathematical expressions, i.e. BEDMAS applies:

Note that the / operator always results in a float, e.g. 8 / 4 is 2.0.

Give the output.

CompSci 101 - Principles of Programming 11

Remember to work from left to right when evaluating operators with the same priority.

Brackets
Exponents
Division,
Multiplication
Addition, Subtraction

result1 = (25 - 7) * 3 + 12 / 3

result2 = 17 - 3 * 2 - 12 / 4 + 15

result3 = 32 / 4 ** (3 + 2 * 3 - 7) / 5

print(result1, result2, result3)

More arithmetic operators
So far, we have seen these algebraic operators: +, -, *, /, **

Two more mathematical operators:
• Floor division (integer division) //
• Modulus (remainder) %

Floor division performs the division, i.e. evaluates to the greatest whole
number less than or equal to the result, e.g.
• 16 // 5 gives 3
• 17 // 5 gives 3
• 34 // 5 gives 6

Modulus performs gives the remainder left over from the division, e.g.
• 16 % 5 gives 1
• 17 % 5 gives 2
• 34 % 5 gives 4
• 16 % 30 gives 16

CompSci 101 - Principles of Programming 12

Arithmetic operators with different numeric types
These are the mathematical operators we will be using:

+, -, *, /, **, //, %

When an arithmetic operator has operands of different numeric types,
the operand with the "narrower" type is widened to that of the other
operand (integer is narrower than floating point), e.g.

• 3 % 5.0 evaluates to 3.0
• 16.0 / 8 evaluates to 2.0
• 17 // 5.0 evaluates to 3.0
• 34.0 // 5 evaluates to 6.0
• 16.0 % 5 evaluates to 1.0
• 17 % 5.0 evaluates to 2.0

CompSci 101 - Principles of Programming 13

Exercise
Give the output.

result1 = 25 % 3

result2 = 20 % 34

result3 = 20 // 3.0

result4 = 5 // 7

result5 = (26.7 // 1) % 3

print(result1, result2, result3, result4, result5)

CompSci 101 - Principles of Programming 14

Exercise
Order of
operations

Give the output.

CompSci 101 - Principles of Programming 15

result1 = 25 / 4 // 3 + 4 * 10 % 3

result2 = 10 - 7 // 3 * 3 + 13 % 5 / 5 * 2

result3 = 17 % 3 * 2 - 3 ** 2 * 3 + 19 // 2

print(result1, result2, result3)

Brackets
Exponents (**)
Division, Multiplication, Modulus, Floor division
Addition, Subtraction

Heron's formula states that the
area of a triangle whose sides
have lengths a, b, and c is:

CompSci 101 - Principles of Programming 16

a

a

a

b

b

b
c

c

c

Write a program which uses Heron's formula to
calculate and print the area of a triangle (use floor
division for the result) given the length of the three sides.

CompSci 101 - Principles of Programming 17

a

a

a
b

b

bc

c
c

import math
side1 = 4
side2 = 7
side3 = 9

#Complete the code

print("Length of sides: ", side1, ', ', side2, ' and ',
side3, sep = "")

print("Area:", area)

Length of sides: 4, 7 and 9
Area: 13

Exercise
An inheritance is apportioned as follows:
• Firstly, the administrator gets a quarter of one percent of the inheritance plus

whatever is left over (nobody receives fractions of dollars, just whole dollars).
• Each non-child, non-parent relative gets one portion
• Each child get 100 times the amount of each relative
• Each parent get twice as much as each child

CompSci 101 - Principles of Programming 18

import math

total_inheritance = 1587654
administrator_percent = 0.0025
num_children = 3
num_parents = 2
num_relatives = 10

#Complete the code
Of the $1587654:
Children get $223054 each
Parents get $446108 each
Relatives get $2230 each
Administrator gets $3976

Use math.floor()
to floor the initial
administrator's
amount and the
amount assigned to
each, parent, child and
non-child.

Summary
In a Python program we can:
• import modules and use the functions defined in the imported module
• use integer division and modulus operators
• use comments. Every program contains a docstring at the top of the program
• use self-documenting code to make the program easy to understand
• understand that an expression evaluates to one value
• understand the order of operations when an expression is evaluated
• understand how to develop a program in steps

CompSci 101 - Principles of Programming 19

Examples of Python features used in this lecture
• import modules and use the functions defined in the module

import math
result = math.sqrt(345)

• use integer division and modulus operators
whole_number = 456 // 3
left_overs = 456 % 12

§ understand the order of operations when an expression is evaluated
result = 32 / 4 ** (1 + 2 * 3 – 7 % 4) / 5

CompSci 101 - Principles of Programming 20

