Learning outcomes

At the end of this lecture, you will know how to:

- perform calculations using standard arithmetic operators
- use variables to store (refer to) literal values
- describe differences between the two Python types: int and floating point
- print numbers and strings to the standard output window

and

• how to install Python 3 on your own computer

Installing Python 3

CompSci 101 - Principles of Programmin

COMPSCI 1©1

Principles of Programming

Lecture 2 - Variables, program execution, doing calculations, print()

Go to the resources page of the CompSci 101 website. You will see the link to **python.org** where you will be able to download the python installer. Make sure you install **Python 3**.

https://www.cs.auckland.ac.nz/courses/compsci101s2c/resources/

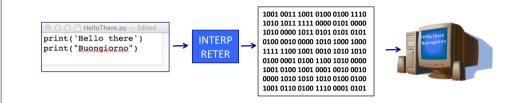
A program is a sequence of instructions

A program is a sequence of instructions which performs a specific task

- Instructions are specified in a sequence
- · Computers execute the instructions one after the other

Instructions are specified using a formal language

- Natural languages are the languages spoken by people
- Formal languages are designed by people for a specific purpose, e.g., mathematical notation, chemical structure of molecules, programming languages


We shall be writing our programs in the **Python 3** programming language

The Python interpreter

Source code (programs) is written in a programming language such as Python.

The Python interpreter translates and executes source code

• One instruction at a time is converted into machine code and executed by the Python interpreter.

Programs are deterministic

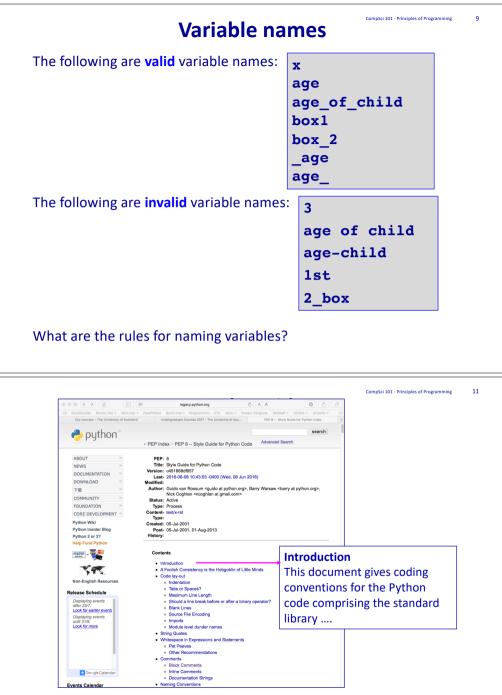
- the result of the program instructions is well defined,
- rules govern the results of instructions. Once we learn the rules, we can control what the computer program does,
- the output is completely predictable

IDLE – The program editor used in CompSci 101

IDLE (Integrated Development Environment) is an integrated development environment for Python. This is the development environment provided when you download Python.

This is the environment we will be using to write and execute our Python programs.

<pre>print("Worrying is like") print() print("praying") print() print("for what you don't want!") print()</pre>	Python 3.7.3 Shell Python 3.7.3 (v3.7.3:ef4ec6ed12, Mar 25 2019, 16:52:2 1) [Clang 6.0 (clang-600.0.57)] on darwin Type "help", "copyright", "credits" or "license()" fo r more information. >> RESTART: /Users/afer023/AdriData/00_CompScil01_S2_20 20/01_Lectures/L02_Variables/L02Code/WorryProgram.py Worrying is like praying
Ln: 9 Co	[(for what you don't want!

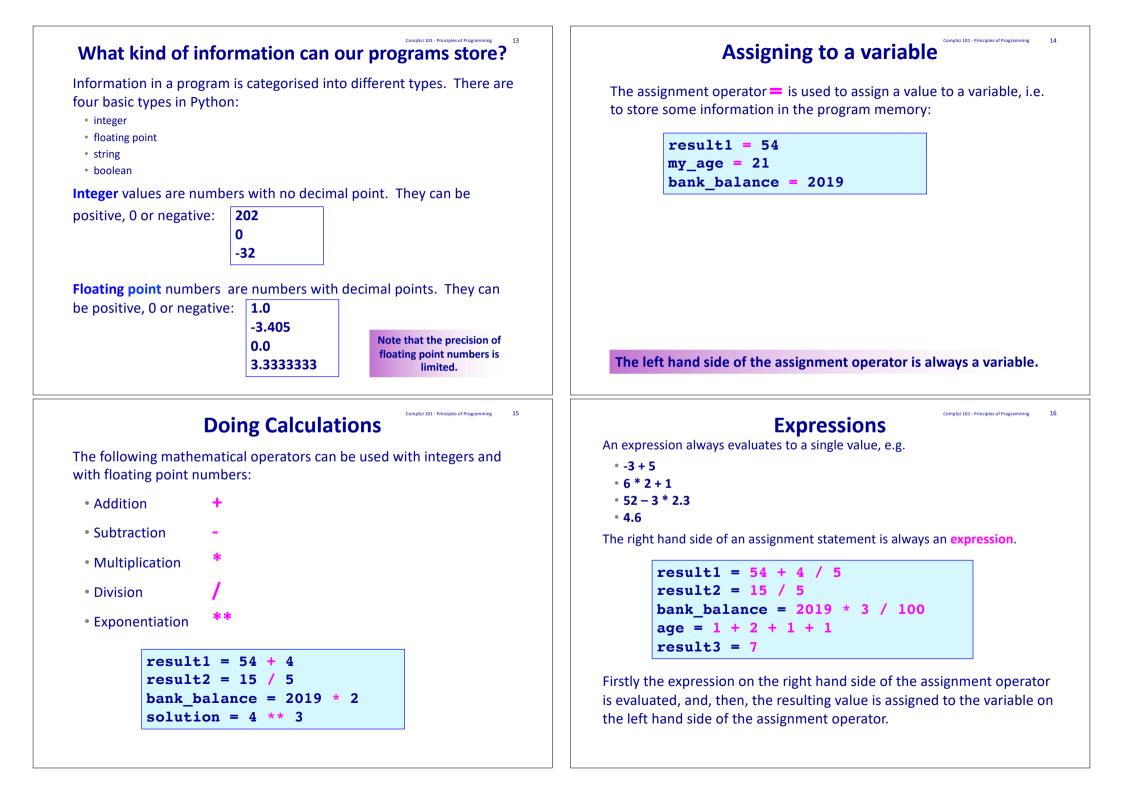

Storing information - variables

Variables are names for storage locations

- Almost any name will work but there are some constraints
- A variable stores only one value at a time
- Assign a value to a variable location using = (the **assignment operator**)
- Refer to the value in a location using the variable name.

Three variables used to store three pieces of information.

name = "Adriana" height = 170.0 age = 21

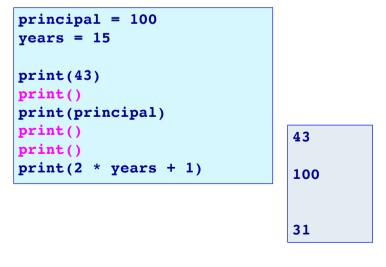


https://legacy.python.org/dev/peps/pep-0008/

	ioose varia	bles with r	neaningful n	ames:	name age course
	ention whe words using	-	ultiple words score:	age age	r_input _allowed _of_child cle_area
The conve	ention is to	use lower	case letters	for varia	able names.
	he variable	-			
Var	iable n	ames s	hould no	ot be	CompSci 101 - Principles of Prop
					compSci 101- Principles of Franc keyword d reserved wo

The electronic copy of the reference book is available from:

https://www.cs.auckland.ac.nz/courses/compsci101s2c/resources/


Expressions

An expression can be used anywhere a single value can be used. A variable can be used anywhere a single value can be used.

result1 = 54 + 4 / 5
result2 = result1 / 10
bank_balance = 2019 * 3 / result2
age = 5
age = age + 4
age = age * 3

Printing a blank line

The **print()** statement with no arguments simply moves the pen to the next line (see a blank line).

Printing to the standard output window

The **print()** function is used to print values to the standard output.

- print(45.67)
- print(100000)
- print(44)

17

CompSci 101 - Principles of Programming

CompSci 101 - Principles of Programming

19

Notice that round brackets (parentheses) are used with functions. After printing whatever is to be printed (whatever is inside the round brackets), a new line is printed, i.e. the pen moves to the next line.

principal = 100 years = 15	
<pre>print(43) print(principal) print(2 * years + 1)</pre>	

43 100 31

An Example Python Program

The formula for working out the final amount when a sum is invested at compound interest is: $M = P(1 + i)^n$ where:

• M is the final amount including the principal.

• P is the principal amount.

- i is the rate of interest (a whole number indicating the % interest) per year.
- n is the number of years invested.

Complete the code which calculates the final amount when \$100 is invested for 15 years at 10% compound interest. The output prints the principal on one line followed by the final amount on the next line:

<pre>principal = 100 years = 15 rate = 10</pre>	100 417.7248169415656		
<pre>final_amount =</pre>			

Strings – Another Python Built-in Type A string consists of a collection of characters delimited by single quotes (' ... ') or by double quotes (" ... "), e.g. • "Meravigioso" • 'The final result is:' • "5 + 2 * 5" The program from the previous slide could be written with more information in the output:

```
principal = 100
vears = 15
rate = 10
final_amount = principal * (1 + rate /100) ** years
print("Initial amount")
                                    Initial amount
print(principal)
                                    100
print("Final amount")
                                    Final amount
print(final amount)
                                    417.7248169415656
```

Printing more than one value on a single line

The default separator between the items printed is a single blank space. We can change this by including an optional last argument in the print() statement, **sep** = "...", e.g.

• print(1, "Meravigioso", "Fabulous", sep = "*") • print('The final results are:', 56, "and", 44, sep = "")

> 1*Meravigioso*Fabulous The final results are: 56and44

The program from the previous slides can now be improved:

```
principal = 100
years = 15
rate = 10
final amount = principal * (1 + rate / 100) ** years
print("Initial amount $", principal, sep = "")
print("Final amount $", final_amount, sep = "")
                      Initial amount $100
```

Printing more than one value on a single line

The print() statement can be used to print more than one variable or value on the same line. Each value to be printed is separated by a comma, e.g.

- print(1, "Meraviglioso", "Fabulous")
- print('The final results are:', 56, "and", 44) The final results are: 56 and 44

1 Meraviglioso Fabulous

CompSci 101 - Principles of Programming

24

The default separator between the items to be printed is a single blank space, e.g.

principal = 100vears = 15rate = 10

```
final_amount = principal * (1 + rate /100) ** years
print("Initial amount", principal)
print("Final amount", final amount)
```

Initial amount 100 Final amount 417.7248169415656

Exercise

\$1 NZ = \$0.95 AUS. Write a program which converts \$500 NZ to Australian dollars and converts \$500 AUS to New Zealand dollars using the above exchange rate. The output of the program should be:

```
NZ $500 = AUS $475.0
amount to convert = 500
                                AUS $500 = NZ $526.3157894736842
nz to aus rate = 0.95
nz dollars = amount to convert
```

Final amount \$417.7248169415656

CompSci 101 - Principles of Programming	25 Examples of Python features used in this lecture
 In a Python program we can: use variables, which have valid variable names, to store values, perform calculations using standard arithmetic operators describe differences between int and float types 	 use variables to store values, using valid variable names principal = 100 years = 15 rate = 10
 print numbers and strings to standard output 	<pre>• perform calculations using standard arithmetic operators</pre>
	 describe differences between int and float types years = 15 rate = 0.01
	<pre>• print numbers and strings to standard output</pre>