
COMPSCI 101
Principles of Programming

Lecture 26 - Using the Canvas widget to draw rows
and columns of shapes

Learning outcomes
 At the end of this lecture, students should be able to
 draw 2D shapes using characters
 draw 2D shapes on a Canvas

2

Drawing 2D shapes using Characters
 We write programs to draw 2D shapes using characters
 (e.g. asterisks)

 The way to conceptualize this is to think about the shape as
a sequence of rows and to think carefully about how to
describe the ith row, e.g. drawing a triangle.

 These kinds of problems will help you learn how to write
loops by finding appropriate formulas to describe each
iteration of the loop in terms of the iteration variable.

*
**

*
*
*
*

3

Printing a Row of characters
 The following example prints only one row of ‘#’ characters

using a SINGLE for loop.

def print_row(number_of_cols):
for j in range(number_of_cols):

print('#', end="")
print()

###

Print a new line character
(i.e. move to next line)

DEMO
Example00.py

4

Printing Multiple Rows of Characters
 To create rows and columns of shapes we need nested loops
 That is, loops within loops to execute lines of code.

 The first (outer) loop is looping through rows, the inner loop is
looping through columns.

 As we go through each column of a given row, we print an asterisk.
The result is that we can build any size rectangle we want.

Set up all the variables needed for the nested loop

for … in loop which dictates how many rows:
Set everything up ready for drawing the row
for … in loop which handles one single row:

draw a single character
move to next line

5

1) Printing a Rectangle of Characters
 To print a rectangle, we need two parameters:
 number of rows = 4 rows
 number of columns = 3 columns

 The outer for loop contains two statements:
 1) inner for loop
 2) print(): move cursor to the next line

 The inner for loop contains one statement:
 statement which prints a character

Set up all the variables needed for the nested loop

for … in loop …
for … in loop which handles one single row:

draw 3 asterisks
move to next line

6

1) Printing a Rectangle of Characters
 To print a rectangle, we need two parameters:
 number of rows = 4 rows
 number of columns = 3 columns

def print_square(number_of_rows, number_of_cols):
for i in range(number_of_rows):

for j in range(number_of_cols):
print('*', end="")

print()

Set up all the variables needed for the nested loop

for … in range … 4 rows
for … in range … 3 columns

draw 1 asterisk
move to next line

DEMO
Example01.py

7

2) Printing a right-angle Triangle
 To print a right-angle triangle, we need one parameter:
 number of rows = 4 rows

 The outer for loop contains two statements:
 1) inner for loop
 2) print(): move cursor to the next line

 The inner for loop contains one statement:
 statement which prints one or more character(s)

*
**

Set up all the variables needed for the nested loop

for … in loop … 4 rows
for … in loop which handles one single row:

if it is the first row, draw 1 asterisk
if it is the second row, draw 2 asterisks
if it is the ith row, draw i asterisks

move to next line

*

**

8

2) Printing a right-angle Triangle
 To print a right-angle triangle, we need one parameter:
 number of rows = 4 rows

*
**

def print_right_angle_triangle(number_of_rows):
for row in range(number_of_rows):

for column in range(row+1):
print('*', end="")

print()

Set up all the variables needed for the nested loop

for … in range … 4 rows
for … in range …

row = 0, number of columns = 1
row = 1, number of columns = 2
row = 2, number of columns = 3

move to next line

*

**

DEMO
Example02.py

9

Exercise 1
 Task:
 Complete the following code fragment to print …

*
**

****def print_right_angle_triangle(number_of_rows):

for row in range(number_of_rows):

print()

10

Program skeleton
 All the programs in this lecture have the following code

skeleton.
 The draw_shapes() function is different for each exercise.

def main():
root = Tk()
root.title("My first Canvas")
root.geometry("400x300+10+20")
a_canvas = Canvas(root)
a_canvas.config(background="pink") #some colour
a_canvas.pack(fill=BOTH, expand = True)
draw_shapes(a_canvas)
root.mainloop()

main()

11

Drawing 2D shapes on a Canvas
 In order to draw a 2D shape (e.g. multiples of squares) on a

canvas, we need:
 The number of rows and number of columns
 Size of each square (size=50)
 Start point (x_margin, y_margin) = (20, 30)
 Nested loops
 Coordinates of the top left corner of each square

 Example:
 1st (20, 30), (70, 30), (120,30) …
 2nd (20, 80), (70,80), (120, 80)
 …

(20,30)

Size of the
squares is

50 pixels by
50 pixels

(70,30)
(120,30)

12

Example 3
 Let’s look at ONE row of the shape FIRST:
 x = 20 (starts at 20 on each row)

 Coordinates of the first square: (20, 30, 70, 80)
 …Second square: (70, 30, 120, 80)
 …Third square(120, 30, 170, 80)

(20,30)
(70,30)(120,30)

x_left = left_hand_side

for j in range(number_of_colums):
rect = (x_left, y_down , x_left + size, y_down + size)
a_canvas.create_rectangle(rect)
x_left += size

modify x-coordinate of the
square in each iteration

13

Drawing … on a Canvas
 Now, we look at the entire shape. We need nested loops!
 The outer loop iterates number of rows.
 1st row : coordinate of the top left corner: (20, 30) and the next

one is (70, 30) and (120, 30) …
 2nd row: coordinate of the top left corner: (20, 80) and the next

one is (70, 80) and (120, 80) …
 3rd row: : coordinate of the top left corner: (20, 130) and the next

one is (70, 130) and (120, 130) …
 …

(20,30)

(20,80)

(20,130)

14

Drawing … on a Canvas
 We put them together:

for i in range(number_of_rows):
x_left = left_hand_side

for j in range(number_of_columns):
rect = (x_left, y_down, x_left + size, y_down + size)
a_canvas.create_rectangle(rect)
x_left += size

y_down += size

Outer loop:

Inner loop:

reset the starting
position of each row

adjust the y
coordinates

Set up all the variables needed for the nested loop
for … in loop which dictates how many rows:

Set everything up ready for drawing the row
for … in loop which handles one single row:

draw a single shape
change the x value to move along the row

change the y value ready for the next row down

15

(20,30)
x_left = left_hand_side

(70, 30)
x_left += size
y no change

(120, 30)
x_left += size
y no change

(20,80)
x_left = left_hand_side

(70, 80)
x_left += size
y no change

(120, 80)
x_left += size
y no change

(20,130)
x_left = left_hand_side

(70, 130)
x_left += size
y no change

(120, 130)
x_left += size
y no change

Drawing … on a Canvas

 Algorithm:

y_down += size

reset the starting
position of each

row

Set up all the variables needed for the nested loop
for … in loop which dictates how many rows:

Set everything up ready for drawing the row
for … in loop which handles one single row:

draw a single shape
change the x value to move along the row

change the y value ready for the next row down

y_down += size

DEMO
Example03.py

16

Quizzes
 Consider the following code fragment:

17

Example 4
 What should we do in order to draw the following shapes?
 First row:

 Fill, draw, fill, draw…

 Second row:
 Draw, fill, draw, fill …

 Third row
 Fill, draw, fill, draw…

rect = (x_left, y_down, x_left + size, y_down + size)
a_canvas.create_rectangle(rect, fill="blue")

rect = (x_left, y_down, x_left + size, y_down + size)
a_canvas.create_rectangle(rect)

Command to create
the filled square

18

4) Drawing … on a Canvas
 Using a Boolean variable
 First row:

 True, False, True, False…

 Second row:
 False, True, False, True…

 Third row
 True, False, True, False…

True True True

True True

True True

True

True True

True
False

FalseFalseFalseFalse

False False

False False False

19

4) Drawing … on a Canvas
 What is the output of the following code fragment?

is_filled = True
for i in range(5):

print(is_filled, end=" ")
is_filled = not is_filled

True False True False True

i is_filled

True

0 False

1 True

2 False

3 True

4 False

20

Drawing … on a Canvas
 We put them together:

Outer loop:

x-margin, y-margin, width, height, first_in_row_filled=True
Set up all the variables needed for the nested loop
set up y-position
for … in loop which dictates how many rows:

Set everything up ready for drawing the row
set up x-positon, is_filled

for … in loop which handles one single row:
draw a single shape
change the x value to move along the row
modify the is_filled boolean

change the y value ready for the next row down
modify the first_in_row_filled boolean

Inner loop

21

Drawing … on a Canvas
 Nested Loops:

first_in_row_filled = True
for i in range(number_of_rows):

x_left = left_hand_side
is_filled = first_in_row_filled
for j in range(number_in_row):

rect = (x_left, y_down, x_left + size, y_down + size)
if is_filled:

a_canvas.create_rectangle(rect, fill="blue")
else:

a_canvas.create_rectangle(rect)
x_left = x_left + size
is_filled = not is_filled

y_down = y_down + size
first_in_row_filled = not first_in_row_filled

DEMO
Example04.py

22

Example 5
 Steps:
 1st iteration of outer loop -> repeat 5 iterations in the inner loop
 2nd iteration of outer loop -> repeat 4 iterations in the inner loop
 3rd iteration of outer loop -> repeat 3 iterations in the inner loop
 4th iteration of outer loop -> repeat 2 iterations in the inner loop
 5th iteration of outer loop -> repeat 1 iteration in the inner loop

23

is_circle boolean
first_is_circle is_circle

True True False True False True

False False True False True

True True False True

False False True

True True

24

Exercise 2
 Draw the canvas

def draw_shapes(a_canvas):
number_of_rows = 6
size = 30
y_down = 0
left_hand_side = size

for number_along_row in range(1, number_of_rows + 1):
x_left = left_hand_side

for j in range(number_along_row):
rect = (x_left + 2, y_down + 2, x_left + size ‐ 2, y_down

+ size ‐ 2)
a_canvas.create_oval(rect, fill="blue")
x_left = x_left + size * 2

y_down = y_down + size

gridlines are of
size 30 pixels

25

