
COMPSCI 101
Principles of Programming
Lecture 25 Graphical User Interface (GUI)

Learning outcomes
 At the end of this lecture, students should be able to:
 understand what a GUI is
 start using TkInter in Python
 use a Canvas object to draw ovals, rectangles, lines, text, polygons

and arcs.

2

What is a GUI?
 A Graphical User Interface (GUI) is a type of interface which

allows users to interact with electronic devices through
graphical icons and visual indicators, i.e., the visual components of
an application or website which aid usability through (hopefully)
easily understood graphics and icons.

 GUI as opposed to text-based interfaces (which require commands
to be typed at the keyboard).

3

Gui's, gui's
everywhere

gui's

The Behaviour of Terminal-Based
Programs and GUI-Based Programs

 Two different versions of a program from a user’s point of
view:
 Terminal-based user interface

 Display a menu
 Get the choice
 Perform the required task

 Graphical user interface

 Both programs perform exactly the same function
 However, their behaviour, or look and feel, from a user’s perspective

are quite different

4

Wearable Devices

Smart Refrigerator

Smart Home

Smart Car

Smart "Things"

Touchscreens

Terminal-Based
 Problems:
 User is constrained to reply to a definite sequence of prompts for

inputs
 Once an input is entered, there is no way to change it

 To obtain results for a different set of input data, user must wait for
the command menu to be displayed again
 At that point, the same command and all of the other inputs must be re-

entered

 User can enter an unrecognized command

5

GUI-Based
 Uses a window that contains various components
 Called window objects or widgets

 Solves problems of terminal-based version

A command button

labels

An entry field

Can be dragged to resize window

6

Wearable Devices

Python – tkinter
 Most programs include a GUI and all major programming

languages support one or more packages to develop GUIs.
 There are many libraries and toolkits of GUI components available

to the Python programmer
 tkinter is not the only GUI-programming toolkit for Python

but it is the most commonly used one.
 tkinter includes classes for windows and numerous types of

window objects
 tkinter gives you the ability to create windows with widgets in

them
 A widget is a graphical component on the screen (button, text label, drop-

down menu, scroll bar, picture, etc…)

 GUIs are built by arranging and combining different widgets
on the screen

7

Check that tkinter is installed
 Before starting, check that tkinter is properly installed on

your system by typing the following in the command line
window:

8

This command should open a window
demonstrating a simple tkinter interface.

Testing for tkinter on the MAC
Terminal window (usually no

problem)

python -m tkinter

A first tkinter program
 A first program using tkinter.

 Note:
 This window is the top level window to which we will add other

components (widgets).
 In this program, the variable, root, represents the top level

window.

9

from tkinter import * #import the tkinter module

def main():
root = Tk() #Create an empty window

root.mainloop() #Pause the code and do nothing
#until the window is closed

main()

What is Tk?
 Tk is a robust and platform independent windowing toolkit,

and it is available to Python programmers through the tkinter
package.
 Tk provides the definitions of many widgets (labels, buttons, text

boxes, menus – the components of a GUI).

 In Python, the tkinter package is the interface for Tk.
 tkinter is a set of wrappers which 'talk' to the Tk widgets and wrap

them up as Python objects.

10

from tkinter import * #import the tkinter module

def main():

root = Tk() #Create an empty window

root.mainloop() #Pause the code and do nothing

#until the window is closed

main()

Steps to create the tkinter program
 Create the parent window
 All applications have a “root” window. This is the parent of all other

widgets. You should create only one!

 Start the event loop (root.mainloop())
 Windows go into an “event loop” where they wait for things to

happen (buttons pushed, etc…). You must tell the root window to
enter its event loop or the window won’t be displayed!

root = Tk()
root.mainloop()

11

Background Colour & Title
 A background colour for the window can be defined:
 a title for the window can be defined:

 The 'config' method is used to set a variety of different
window features, such as the background colour.

12

from tkinter import *
def main():

root = Tk()
root.title("My first Window")
root.config(background='blue')
root.mainloop()

main()

DEMO
Example01.py

The size and position of the window
 We would like to control the width, height and position of

the top level window.
 The geometry() method sets a size for the window and positions it

on the screen.
 The first two arguments are the width and the height of the window. The

last two arguments are the x and y screen position coordinates of the top
left hand corner of the window.

13

from tkinter import *
def main():

root = Tk()
root.geometry("750x200+10+30")
root.title("My first Window")
root.config(background='purple')
root.mainloop()

main()

Named colours
 There are lots of 'named colours' which can be used.
 Look at the website, http://wiki.tcl.tk/37701

 Some examples
 light slate gray ‐ gray ‐ light grey ‐ midnight blue ‐ navy ‐ cornflower blue
‐ dark slate blue ‐ slate blue ‐ medium slate blue ‐ light slate blue ‐
medium blue ‐ royal blue – blue ‐ dodger blue ‐ deep sky blue ‐ sky blue
‐ light sky blue ‐ steel blue ‐ light steel blue ‐ light blue ‐ powder blue

14

from tkinter import *
def main():

root = Tk()
root.title("My first Window")
root.config(background='powder blue')
root.geometry("750x200+10+30")
root.mainloop()

main()

Widgets
 GUIs are built by arranging and combining different widgets in

the window.
 Widgets are objects which can be added to our top level window.

These will allow the user to interact with the program. Some
widget examples:

 With tkinter we are able to create windows with widgets
inside them

15

Buttons, Checkbuttons, Radiobuttons, Menubuttons,
Entry (for text field entries)
Message (for displaying text messages to the user)
Labels (text captions, images)
Frames (a container for other widgets)
Scale, Scrollbar
Canvas (for drawing shapes, …)
Text (for displaying and editing text) and others..

In CompSci 101 we will quickly look at the Label widget
and then use a Canvas widget to draw some shapes.

Adding a Label widget
 A Label widget display text.
 Steps:
 Create the parent window (root)

 Widgets are placed inside parent windows. In our case the parent of all
our widgets is the top level window.

 Create a label
 When creating the Label widget we need to pass the top level windows,

root, (in which the label will be placed) as the first argument.
 We also need to pass the text which is to be displayed inside the Label.

 Define the position of the label (hello.pack())
 Tell the label to place itself into the root window and display.

 Start the event loop (root.mainloop())

16

root = Tk()
hello = Label(root,text="Hello world!")
hello.pack()
root.mainloop()

Some Label properties
 Label objects can be configured (background colour,

foreground colour, font).
 Properties:

 bg: The normal background colour displayed
 fg: specifies the colour of the text
 font: specifies in what font that text will be displayed

17

a_label = Label(root, text = "A Label widget \nin a window")
a_label.config(bg="blue", fg="magenta")
a_font = ("Times", 40, "bold")
a_label.config(font=a_font)

DEMO
Example02_2.py

Layout Management
 Most windowing toolkits (such as tkinter) have layout

management systems which have the job of arranging the
widgets in the window!
 When we pack widgets into the window they always go under the

previous widget

18

root = Tk()
a_label1 = Label(root, text = "A Label widget in a window")
a_label2 = Label(root, text = "Another one")
a_label3 = Label(root, text = "And more!")
a_label1.pack()
a_label2.pack()
a_label3.pack()

Place label widgets on top of
each other and centre them

DEMO
Example02_3.py

Grid Layout Manager
 Python has other geometry managers (instead of pack) to

create any GUI layout you want
 Grid – lets you specify a row, column grid location and how many

rows and columns each widget should span

 Example:

 WARNING: Never use multiple geometry managers in one
window! They are not compatible with each other and may cause
infinite loops in your program!!

root = Tk()
go_label = Label(root, text='Go')
go_label.grid(row=0, column=0)
stop_label = Label(root, text='Stop')
stop_label.grid(row=1, column=0)
root.mainloop()

19

Exercise 1
Creating a number pad

 Task:
 Complete the following program which creates 9 labels as shown in

the above picture

 Code:

root = Tk()
labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9']
for i in range(len(labels)):

#create and add a label each time

root.mainloop()

20

Grid Layout Manager

 Algorithm
 1st label: row = 0, col = 0
 2nd label: row = 0, col = 1
 3rd label: row = 0, col = 2
 4th label: row = 1, col = 0
 5th label: row = 1, col = 1
 6th label: row = 1, col = 2
 … Row=0,

column = 0

Row=0,
column = 2

labels = ['1', '2', '3', '4', '5', '6', '7', '8', '9']

21

Creating a Canvas widget
 A Canvas widget provides a rectangular area in which shapes

(lines, ovals, polygons, rectangles, arcs, text) can be drawn.
 (The Canvas object can also contain images or bitmaps.)
 As well as drawing shapes in the Canvas area, the Canvas object can

contain other widgets and frames.
 When creating a Canvas widget we need to pass the top level widget, root,

(in which the canvas will be placed) as the first argument

22

root = Tk()
a_canvas = Canvas(root)
a_canvas.config(background="blue", width=200, height=100)
a_canvas.pack()
root.mainloop()

DEMO
Example03.2.py

Expand and Fill
 Sometimes it is useful to make a widget as big as the parent

window and to make the widget resizable when the parent
window is resized.
 The pack() method has optional parameters which control this.

 expand:
 When set to True, the widget expands to fill any space not otherwise used in the

widget's parent.

 fill:
 Determines whether the widget fills any extra space allocated to it by the

packer, or keeps its own minimal dimensions: NONE (default), X (fill only
horizontally), Y (fill only vertically), or BOTH (fill both horizontally and
vertically).

23

Examples
 Case 1:

 The pack method tells Tk to fit the size of the window to the given
canvas. The canvas remains unchanged (top, centre) after resizing.

 Case 2:

 Set the size of the window to 400x200
 Canvas: centred and aligned to the top

24

root = Tk()
a_canvas = Canvas(root)
a_canvas.config(background="blue", width=200, height=100)
a_canvas.pack()

resize

root = Tk()
root.geometry("400x200+10+30")
a_canvas = Canvas(root)
a_canvas.config(background="blue", width=200, height=100)
a_canvas.pack()

resize

Examples
 Case 3:

 Make the canvas as wide as the window, use Fill=X

 Case 4:

 make the Canvas object as big as the parent window and make the
widget resizable when the parent window is resized.

25

...
a_canvas.pack(fill=X)

...
a_canvas.pack(fill=BOTH,expand=True)

resize

resize

Canvas coordinate system
 Each pixel in the Canvas area has an x position (across the

canvas) and a y position (down the canvas).
 Position (0, 0) is the top left corner of the canvas.

26

(0, 0) X value increases (going right)

Y value increases
(going down)

Drawing
 What can be done with a Canvas object?
 Drawing shapes

 Lines
 Rectangles
 Ovals
 Polygons

 Drawing text
 Drawing Arcs

27

Drawing Lines
 The method create_line(coords, options) is used to draw

a straight line.
 The coordinates "coords" are given as four integer numbers: x1, y1,

x2, y2. This means that the line goes from the point (x1, y1) to the
point (x2, y2).

 Note that the line object does not include the end pixel, e.g., the
line defined by the coordinates: (0,2,5,2) only includes the 5 pixels:
 (0,2), (1,2), (2,2), (3,2), (4,2)

28

a_canvas.create_line(0, 50, 100, 50)

(0, 0)

DEMO
Example04.py

Line Options
 Some line options
 fill (line colour, default is black)
 width (line width, default is 1.0)
 dash e.g., dash = (4, 8) 4 pixels drawn followed by 8 pixels blank

29

a_canvas.create_line(0, 0, 100, 200, fill="blue")
a_canvas.create_line(200, 0, 200, 300, fill="purple", width="3.0")
a_canvas.create_line(30, 0, 130, 200, fill="magenta", width="10.0",
dash = (4, 8))

(0, 0)

Drawing Rectangles
 The method create_rectangle(x0,y0,x1,y1, options) is

used to draw a rectangle.
 The rectangle is defined by two points: (x0, y0) the top left position

and (x1, y1) the bottom right position.

 Note that the rectangle object does not include the right hand
border or the bottom border,
 e.g., the rectangle with coordinates: (100,100,102,103,…) is 2 pixels by 3

pixels including the 6 pixels:

30

a_canvas.create_rectangle(10, 50, 100, 100)

(0, 0)

(100, 100), (101, 100),
(100, 101), (101, 101),
(100, 102), (101, 102),

DEMO
Example04_2.py

Rectangle Options
 Some rectangle options
 fill (colour, default is no fill)
 outline (The colour of the border), default is outline='black’)
 dash (dashed border)

 …

31

a_canvas.create_rectangle(20, 20, 100, 150, fill="yellow")
a_canvas.create_rectangle(200, 150, 250, 250, fill="blue", dash =
(4, 8), outline="white")
a_rect = (300, 30, 320, 50)
a_canvas.create_rectangle(a_rect, fill="magenta")

Drawing Ovals
 The method create_oval(x0,y0,x1,y1, options) is used to

draw a circle or an oval(ellipse).
 The oval drawn fits into a rectangle defined by the coordinates:

(x0, y0) of the top left corner and (x1, y1) of a point just outside of
the bottom right corner.

32

a_canvas.create_oval(10, 50, 100, 100)

DEMO
Example04_3.py

Oval Options
 Some oval options:
 fill (colour, default is no fill)
 outline (The colour of the border. Default is outline='black’)
 dash (dashed border)

33

a_canvas.create_oval(20, 20, 100, 150, fill="white", outline="red")
a_canvas.create_oval(200, 150, 250, 250, fill="blue", dash = (4, 8),
outline="white")
a_box = (300, 30, 320, 50)
a_canvas.create_oval(a_box, fill="magenta")

Drawing Polygons
 The method create_polygon(coords, options) is used to

draw a polygon where the parameter, coords, is a series of
points.

 Note:
 The createPolygon method requires at least three (x, y) coordinate pairs
 The createPolygon method connects the first point to the last point to

enclose the area.
34

points = [150, 100, 200, 120, 240, 180]
a_canvas.create_polygon(points)

points = [10,10,100,20,70,40,90,50,80,80,180,270…]

p1 p2 p3

(150, 100) (200, 100)

(240, 180)

DEMO
Example04_4.py

Polygon Options
 Some Polygon Options:
 fill (colour, default is no fill)
 outline (The colour of the border. Default is outline='black’)
 dash (dashed border)

35

points = [10, 10, 100, 20, 70, 40, 90, 50, 80, 80, 180, 270]
a_canvas.create_polygon(points, fill="white", outline="red")
coords = [80,200, 100, 100, 150, 150, 200, 100, 250, 150, 300, 200]
a_canvas.create_polygon(coords, fill="red", outline="white")

Exercise 2
 Complete the following code to draw the following shapes on

a canvas:

36

from tkinter import *
def main():

root = Tk()
a_canvas = Canvas(root, width=200, height=100)
a_canvas.pack(fill=BOTH, expand=True)

root.mainloop()
main()

Drawing Text
 The method create_text(x, y, text="…", options) is used to

print text on a canvas.
 The first two parameters are the x and the y positions of the text

object.

 Note:
 By default, the text is centred on this position.

37

a_canvas.create_text(50, 100, text="Python")
a_canvas.create_rectangle(50, 100, 100, 150) (50, 100)

DEMO
Example04_5.py

Text Options
 Some other Text Options
 fill (colour, default is black)
 font (The font used to display the text)
 anchor (controls where the text is displayed with respect to x, y)

 By default, the text is centred on this position. You can override this with
the anchor option.

38

a_canvas.create_line(100, 40, 150, 40)
a_canvas.create_rectangle(100, 40, 105, 45)
a_canvas.create_text(100, 40, text="NW(…)", anchor=NW, font=a_font)

Note: north – below the line;
south above the line
east: before the point, west: after
the point
For example: SW: the text will be
positioned so its lower left
corner is at point (x, y).

Drawing Arcs
 The method create_arc(x0, x1, y0, y1, start=…, extent=…, options)

is used to draw an arc on a canvas.
 An arc object is a wedge-shaped slice taken out of an ellipse.
 This includes whole ellipses and circles as special cases
 Point (x0, y0) is the top left corner and (x1, y1) the lower right corner of

the bounding rectangle
 start : Starting angle for the slice,
 extent : Width of the slice in degrees. (extends counterclockwise)

39

a_canvas.create_rectangle(50,50,150,200)
a_canvas.create_arc(50,50,150,200,start=225,extent=90))

(50, 50)

(150, 200)
90

the arc starts at an angle 225 degrees
counterclockwise from the positive x-direction, and

extends counterclockwise for 90 degrees.

DEMO
Example04_6.py

Arc Options
 Some arc options
 fill (colour, default is no fill)
 outline (The colour of the border. Default is outline='black’)
 dash (dashed border)

40

start: 0
extend: 90

90

start: 0
extend: 45

start: 120
extend: 90

start: 120
extend: 45

90

start: 0 degree

120

Example:
 create_arc(x0, y0, x1, y1, start=…, extent=…,

**other_options)

41

start1_degrees = 45
extent_degrees = 100
enclosing_oval = (10, 20, 220, 150)
a_canvas.create_oval(enclosing_oval, fill="white")
a_canvas.create_arc(enclosing_oval, start=start1_degrees, extent=extent_degrees, fill="red")
start2_degrees = start1_degrees + extent_degrees + 10
a_canvas.create_arc(enclosing_oval, start=start2_degrees, extent=extent_degrees, fill="blue")

...

Example04_7.py
DEMO

Summary
 tkinter module includes classes, functions, and constants

used in GUI programming
 A GUI-based program is structured as a main window class
 A Canvas object can be used to draw simple shapes.
 Line
 Circle
 Rectangle
 Polygon
 Arc
 Text

42

