
Lecture 19 - Tuples

COMPSCI 1  1
Principles of Programming



At the end of this lecture, students should be able to:
• understand the tuple type
• create tuples
• manipulate code which contains tuples
• return tuples
• know the differences between tuples and lists

Learning outcomes
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Recap
From lecture 17
• Understand various operators on lists
• Understand various list methods
• Lists are mutable
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def remove_multiples(number_list, multiples_of):
for index in range(len(number_list)-1, -1, -1):

if number_list[index] % multiples_of == 0:
number_list.pop(index)

def main():
numbers = [25, 5, 9, 10, 15, 8]
print(numbers)
remove_multiples(numbers, 5) #remove multiples of 5
print("Numbers left", numbers)

main()

[25, 5, 9, 10, 15, 8]
Numbers left [9, 8]



Creating TuplesTuples
• The items of a tuple are enclosed inside a pair of parentheses, separated by commas 

even if there is only one item in the tuple
• A tuple is an ordered sequence of items of any types
• Tuples are sequences - the elements of a tuple have an order.

Create Tuples
• an empty tuple

• Other tuple creation examples:

or
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tuple1 = (4, True, "Test", 34.8)

tuple3 = (1, 2, "jim")

tuple1 = tuple()

tuple2 = ("red", "blue")

tuple4 = (3,)

tuple1 = ()

Needs the comma if only one element 
in the tuple



Creating Tuples with a single element
Create Tuples

If the tuple contains a single element, a comma is added after the element. This is 
required as, otherwise, there would be confusion between a tuple and a parenthesised
obect, e.g., ( (5) is the same as the integer 5).

tuple1 = (5,)

print( type((5,)) )  #(5,) is a tuple
print( type((5)) )   #(5) is an int (with parentheses around it)

<class 'tuple'>
<class 'int'>
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Note that tuple is a built-in type and it should not be used as a variable name.



Printing tuples
Printing the elements of tuples
• Use the print() function to print the elements of the tuple.

tuple1 = (3, 6, 8)
print(tuple1)

tuple2 = ("abcdef", "ghij", "klmno")
print(tuple2)

(3, 6, 8)
('abcdef', 'ghij', 'klmno')
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Note that tuples use round brackets.



Accessing the elements of a tuple
Accessing tuple elements
• Each element in a tuple can be accessed using the index value (starting from index 0) 

and square brackets.
• The elements of a tuple can be accessed from the end of the tuple backwards using a 

negative index.
• for … in loop can be used to visit each element of a tuple (iterate through the tuple).

tuple1 = (3, 6, 8)
print("1.", tuple1[1], tuple1[2], tuple1[0])
print("2.", tuple1[-2], tuple1[-3])

tuple2 = (tuple1[1], tuple1[2], tuple1[0], 1, 7)
print("3.", tuple2)
print()

for element in tuple2:
if element > 3:

print(element)

1. 6 8 3
2. 6 3
3. (6, 8, 3, 1, 7)

6
8
7
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+, * and in operators and tuples
Operators + (concatenate), * (repeat), and in (membership) can be 
used with tuples.  The result of the + and * operators is a new tuple 
object.
tuple1 = (3, 6, 8)
tuple2 = (5, 1, 0, 4)
tuple3 = tuple2 + tuple1
tuple4 = tuple1 * 3

print(0 in tuple1)
print(0 in tuple2)

print("1.", tuple1)
print("2.", tuple2)
print("3.", tuple3)
print("4.", tuple4)

False
True
1. (3, 6, 8)
2. (5, 1, 0, 4)
3. (5, 1, 0, 4, 3, 6, 8)
4. (3, 6, 8, 3, 6, 8, 3, 6, 8)
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Slicing tuples
Tuples can be sliced in the same way as strings and lists are sliced. 
The result is a new tuple.

tuple1 = (3, 6, 8, 0, 1, 2, 7)

print("1.", tuple1[0:6:2])
print("2.", tuple1[2:7:3])
print("3.", tuple1[5:1:-1])

1. (3, 8, 1)
2. (8, 2)
3. (2, 1, 0, 8)
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Tuples are immutable
Tuples are "immutable", i.e., the elements of a tuple object cannot be 
changed.
tuple1 = (3, 6, 8)
tuple2 = tuple1
tuple3 = (tuple2[0], tuple2[1], tuple2[2])

print("1.", tuple1 is tuple2)

tuple1 = tuple1 + (5,)

print("2.", tuple1)
print("3.", tuple2)

print("4.", tuple1 is tuple2)
print("5.", tuple2 == tuple3)
print("6.", tuple2 is tuple3)

1. True
2. (3, 6, 8, 5)
3. (3, 6, 8)
4. False
5. True
6. False
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Converting tuples into lists
The shortcut way of creating an empty list is:
The alternative way of creating an empty list is:

A tuple can be converted into a list by enclosing the tuple inside 
list(…), i.e., passing the tuple as an argument.   For example,

tuple1 = (3, 6, 8, 9, 5)
a_list = list(tuple1)
a_list.sort()

print("1.", tuple1)
print("2.", a_list)

1. (3, 6, 8, 9, 5)
2. [3, 5, 6, 8, 9]

a_list = []

a_list = list()

tuple1 = (3, 6, 8)
a_list = list(tuple1)
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Converting lists into tuples
The shortcut way of creating an empty tuple is:
The alternative way to create an empty tuple is:

A list can be converted into a tuple by enclosing the list
inside tuple(…) , i.e., passing the list as an argument. 

tuple1 = (3, 6, 8, 2, 5)
a_list = list(tuple1)
a_list.sort()
a_tuple = tuple(a_list)

print("1.", a_list)
print("2.", tuple1)
print("3.", a_tuple)

1. [2, 3, 5, 6, 8]
2. (3, 6, 8, 2, 5)
3. (2, 3, 5, 6, 8)

a_tuple = ()

a_tuple = tuple()

a_list = [3, 6, 8]
a_tuple = tuple(a_list)
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Multiple assignment
Assignment to more than one variable can be done on ONE line.
scores = (56, 78, 91)
(test1, test2, test3) = scores  #or test1, test2, test3 = scores
name1, name2, name3 = "Bob", "Jane", "Jill"
name2 = name2 + "-marie"

print("1.", test2, test1, test3)
print("2.", name3, name1, name2)

1. 78 56 91
2. Jill Bob Jane-marie
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Returning more than one value
Functions can return a tuple of values which can then be unpacked.
def get_a_date():

months = ("January", "February", …, "November", "December")
days_in_month = (31, 28, 31, 30, 31, …, 30, 31, 30, 31)
days = ("Sunday", "Monday", …, "Saturday")
day_number = random.randrange(0, len(days))
month_number = random.randrange(0, len(months))
date = random.randrange(1, days_in_month[month_number] + 1)
return (days[day_number], months[month_number], date)

def main():
date = get_a_date()
print("Your best day next year is a", date[0],  "around", 

date[1], date[2])
date = get_a_date()
print("Next year be careful on a", date[0],  "around", 

date[1], date[2])
main()

Your best day next year is a Wednesday around February 14
Next year be careful on a Sunday around November 10
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A tuple method
index(x) returns the index of the first element from the left in the 
tuple with a value equal to x.  

Python throws an error if there is no such value in the list.  Because of 
this, index(x) is usually preceded by a check for that element using 
the in operator. 

tuple1 = (10, 20, 30, 40, 50, 55)
if 40 in tuple1: #check first

index = tuple1.index(40)
print("40 is in position", index, "in the tuple")

else:
print("40 is not in the tuple")

40 is in position 3 in the tuple
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Exercise
Complete the get_uniques_tuple() function which returns a 
tuple made up of all the unique values in the parameter tuple, 
a_tuple.  You may find that you need to work with a list, and, 
finally, convert the list to a tuple.
def get_uniques_tuple(a_tuple):

def main():
a_tuple = get_uniques_tuple((3, 4, 5, 6, 3, 2, 9, 4, 

5, 6, 2, 9))
print("Without duplicates", a_tuple)

main()
Without duplicates (3, 4, 5, 6, 2, 9)
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Exercise
Complete the carry_out_transactions() function which 
is passed an initial balance and a tuple of transactions (positive and 
negative amounts).  The function returns a tuple made up of three 
values: the final balance, the sum of all the deposits and the sum of 
all the withdrawals.
def carry_out_transactions(balance, transactions_tuple):

def main():
results = carry_out_transactions(5400, (100, -400, 500,

-800, 600, -100, - 200, 50, 0, -200))
print("Balance $", results[0], ", deposits $", results[1], 

", withdrawals $", results[2], sep="")

main() Balance $4950, deposits $1250, withdrawals $1700
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Why tuples?
Tuples cannot be inadvertently changed (remember they are 
immutable).  They are a useful tool if you want to use read-only 
information.
Tuples are immutable and can be used where only immutable objects 
can be used ( this becomes important later in course).
Processing tuples is faster than processing lists.
Assignment to multiple variables (packed inside a tuple) can be done 

on the same line of code.
A function can return multiple values (packed inside a tuple).

Tuples are processed more quickly than lists.  If you are not going to 
change the elements of a series of objects, use a tuple rather than a 
list.
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Summary
A tuple stores data as a sequence
• The operators: +, * and in can be used with tuples
• We use a for … in … to iterate through the contents of a tuple
• len() returns the number of elements in a tuple
• min() returns the minimum of the  elements in a tuple
• max() returns the maximum of the elements in a tuple
• sum() returns the sum of the elements in a tuple
• Each element of the tuple can be accessed using the index operator.  The index can be 

negative (starting from the end of the tuple)
• Slices of tuple can be obtained by using [slice_start: slice_end: step]
• Tuples are immutable and therefore the elements of a tuple can be accessed but not 

changed

• Tuples can be converted into lists and vice versa
• Assignment to multiple variables (packed inside a tuple) can be done on the same line of 

code.
• A function can return multiple values (packed inside a tuple).
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Python features used in this lecture
tuple1 = (5, 7, 2, 6, 4, 3, 9) 
tuple2 = (6, )
for element in tuple1:

…

number_of_elements = len(tuple1) 
min_value = min(tuple1) 
max_value = max(tuple1) 
total = sum(tuple1) 
element_from_end = tuple1[-2]
tuple2 = tuple1[1:5:2]
position = tuple1.index(3) 
tuple3 = tuple([8, 4, 9])
list1 = list(tuple1)
(a, b, c) = ("ant", "bee", "cat")
def get_results():

return (56, 23, 91)
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