
Lecture 19 - Tuples

COMPSCI 1 1
Principles of Programming

At the end of this lecture, students should be able to:
• understand the tuple type
• create tuples
• manipulate code which contains tuples
• return tuples
• know the differences between tuples and lists

Learning outcomes
CompSci 101 - Principles of Programming 2

Recap
From lecture 17
• Understand various operators on lists
• Understand various list methods
• Lists are mutable

3CompSci 101 - Principles of Programming

def remove_multiples(number_list, multiples_of):
for index in range(len(number_list)-1, -1, -1):

if number_list[index] % multiples_of == 0:
number_list.pop(index)

def main():
numbers = [25, 5, 9, 10, 15, 8]
print(numbers)
remove_multiples(numbers, 5) #remove multiples of 5
print("Numbers left", numbers)

main()

[25, 5, 9, 10, 15, 8]
Numbers left [9, 8]

Creating TuplesTuples
• The items of a tuple are enclosed inside a pair of parentheses, separated by commas

even if there is only one item in the tuple
• A tuple is an ordered sequence of items of any types
• Tuples are sequences - the elements of a tuple have an order.

Create Tuples
• an empty tuple

• Other tuple creation examples:

or

CompSci 101 - Principles of Programming 4

tuple1 = (4, True, "Test", 34.8)

tuple3 = (1, 2, "jim")

tuple1 = tuple()

tuple2 = ("red", "blue")

tuple4 = (3,)

tuple1 = ()

Needs the comma if only one element
in the tuple

Creating Tuples with a single element
Create Tuples

If the tuple contains a single element, a comma is added after the element. This is
required as, otherwise, there would be confusion between a tuple and a parenthesised
obect, e.g., ((5) is the same as the integer 5).

tuple1 = (5,)

print(type((5,))) #(5,) is a tuple
print(type((5))) #(5) is an int (with parentheses around it)

<class 'tuple'>
<class 'int'>

CompSci 101 - Principles of Programming 5

Note that tuple is a built-in type and it should not be used as a variable name.

Printing tuples
Printing the elements of tuples
• Use the print() function to print the elements of the tuple.

tuple1 = (3, 6, 8)
print(tuple1)

tuple2 = ("abcdef", "ghij", "klmno")
print(tuple2)

(3, 6, 8)
('abcdef', 'ghij', 'klmno')

CompSci 101 - Principles of Programming 6

Note that tuples use round brackets.

Accessing the elements of a tuple
Accessing tuple elements
• Each element in a tuple can be accessed using the index value (starting from index 0)

and square brackets.
• The elements of a tuple can be accessed from the end of the tuple backwards using a

negative index.
• for … in loop can be used to visit each element of a tuple (iterate through the tuple).

tuple1 = (3, 6, 8)
print("1.", tuple1[1], tuple1[2], tuple1[0])
print("2.", tuple1[-2], tuple1[-3])

tuple2 = (tuple1[1], tuple1[2], tuple1[0], 1, 7)
print("3.", tuple2)
print()

for element in tuple2:
if element > 3:

print(element)

1. 6 8 3
2. 6 3
3. (6, 8, 3, 1, 7)

6
8
7

CompSci 101 - Principles of Programming 7

+, * and in operators and tuples
Operators + (concatenate), * (repeat), and in (membership) can be
used with tuples. The result of the + and * operators is a new tuple
object.
tuple1 = (3, 6, 8)
tuple2 = (5, 1, 0, 4)
tuple3 = tuple2 + tuple1
tuple4 = tuple1 * 3

print(0 in tuple1)
print(0 in tuple2)

print("1.", tuple1)
print("2.", tuple2)
print("3.", tuple3)
print("4.", tuple4)

False
True
1. (3, 6, 8)
2. (5, 1, 0, 4)
3. (5, 1, 0, 4, 3, 6, 8)
4. (3, 6, 8, 3, 6, 8, 3, 6, 8)

CompSci 101 - Principles of Programming 8

Slicing tuples
Tuples can be sliced in the same way as strings and lists are sliced.
The result is a new tuple.

tuple1 = (3, 6, 8, 0, 1, 2, 7)

print("1.", tuple1[0:6:2])
print("2.", tuple1[2:7:3])
print("3.", tuple1[5:1:-1])

1. (3, 8, 1)
2. (8, 2)
3. (2, 1, 0, 8)

CompSci 101 - Principles of Programming 9

Tuples are immutable
Tuples are "immutable", i.e., the elements of a tuple object cannot be
changed.
tuple1 = (3, 6, 8)
tuple2 = tuple1
tuple3 = (tuple2[0], tuple2[1], tuple2[2])

print("1.", tuple1 is tuple2)

tuple1 = tuple1 + (5,)

print("2.", tuple1)
print("3.", tuple2)

print("4.", tuple1 is tuple2)
print("5.", tuple2 == tuple3)
print("6.", tuple2 is tuple3)

1. True
2. (3, 6, 8, 5)
3. (3, 6, 8)
4. False
5. True
6. False

CompSci 101 - Principles of Programming 10

Converting tuples into lists
The shortcut way of creating an empty list is:
The alternative way of creating an empty list is:

A tuple can be converted into a list by enclosing the tuple inside
list(…), i.e., passing the tuple as an argument. For example,

tuple1 = (3, 6, 8, 9, 5)
a_list = list(tuple1)
a_list.sort()

print("1.", tuple1)
print("2.", a_list)

1. (3, 6, 8, 9, 5)
2. [3, 5, 6, 8, 9]

a_list = []

a_list = list()

tuple1 = (3, 6, 8)
a_list = list(tuple1)

CompSci 101 - Principles of Programming 11

Converting lists into tuples
The shortcut way of creating an empty tuple is:
The alternative way to create an empty tuple is:

A list can be converted into a tuple by enclosing the list
inside tuple(…) , i.e., passing the list as an argument.

tuple1 = (3, 6, 8, 2, 5)
a_list = list(tuple1)
a_list.sort()
a_tuple = tuple(a_list)

print("1.", a_list)
print("2.", tuple1)
print("3.", a_tuple)

1. [2, 3, 5, 6, 8]
2. (3, 6, 8, 2, 5)
3. (2, 3, 5, 6, 8)

a_tuple = ()

a_tuple = tuple()

a_list = [3, 6, 8]
a_tuple = tuple(a_list)

CompSci 101 - Principles of Programming 12

Multiple assignment
Assignment to more than one variable can be done on ONE line.
scores = (56, 78, 91)
(test1, test2, test3) = scores #or test1, test2, test3 = scores
name1, name2, name3 = "Bob", "Jane", "Jill"
name2 = name2 + "-marie"

print("1.", test2, test1, test3)
print("2.", name3, name1, name2)

1. 78 56 91
2. Jill Bob Jane-marie

CompSci 101 - Principles of Programming 13

Returning more than one value
Functions can return a tuple of values which can then be unpacked.
def get_a_date():

months = ("January", "February", …, "November", "December")
days_in_month = (31, 28, 31, 30, 31, …, 30, 31, 30, 31)
days = ("Sunday", "Monday", …, "Saturday")
day_number = random.randrange(0, len(days))
month_number = random.randrange(0, len(months))
date = random.randrange(1, days_in_month[month_number] + 1)
return (days[day_number], months[month_number], date)

def main():
date = get_a_date()
print("Your best day next year is a", date[0], "around",

date[1], date[2])
date = get_a_date()
print("Next year be careful on a", date[0], "around",

date[1], date[2])
main()

Your best day next year is a Wednesday around February 14
Next year be careful on a Sunday around November 10

CompSci 101 - Principles of Programming 14

A tuple method
index(x) returns the index of the first element from the left in the
tuple with a value equal to x.

Python throws an error if there is no such value in the list. Because of
this, index(x) is usually preceded by a check for that element using
the in operator.

tuple1 = (10, 20, 30, 40, 50, 55)
if 40 in tuple1: #check first

index = tuple1.index(40)
print("40 is in position", index, "in the tuple")

else:
print("40 is not in the tuple")

40 is in position 3 in the tuple

CompSci 101 - Principles of Programming 15

Exercise
Complete the get_uniques_tuple() function which returns a
tuple made up of all the unique values in the parameter tuple,
a_tuple. You may find that you need to work with a list, and,
finally, convert the list to a tuple.
def get_uniques_tuple(a_tuple):

def main():
a_tuple = get_uniques_tuple((3, 4, 5, 6, 3, 2, 9, 4,

5, 6, 2, 9))
print("Without duplicates", a_tuple)

main()
Without duplicates (3, 4, 5, 6, 2, 9)

CompSci 101 - Principles of Programming 16

Exercise
Complete the carry_out_transactions() function which
is passed an initial balance and a tuple of transactions (positive and
negative amounts). The function returns a tuple made up of three
values: the final balance, the sum of all the deposits and the sum of
all the withdrawals.
def carry_out_transactions(balance, transactions_tuple):

def main():
results = carry_out_transactions(5400, (100, -400, 500,

-800, 600, -100, - 200, 50, 0, -200))
print("Balance $", results[0], ", deposits $", results[1],

", withdrawals $", results[2], sep="")

main() Balance $4950, deposits $1250, withdrawals $1700

CompSci 101 - Principles of Programming 17

Why tuples?
Tuples cannot be inadvertently changed (remember they are
immutable). They are a useful tool if you want to use read-only
information.
Tuples are immutable and can be used where only immutable objects
can be used (this becomes important later in course).
Processing tuples is faster than processing lists.
Assignment to multiple variables (packed inside a tuple) can be done

on the same line of code.
A function can return multiple values (packed inside a tuple).

Tuples are processed more quickly than lists. If you are not going to
change the elements of a series of objects, use a tuple rather than a
list.

CompSci 101 - Principles of Programming 18

Summary
A tuple stores data as a sequence
• The operators: +, * and in can be used with tuples
• We use a for … in … to iterate through the contents of a tuple
• len() returns the number of elements in a tuple
• min() returns the minimum of the elements in a tuple
• max() returns the maximum of the elements in a tuple
• sum() returns the sum of the elements in a tuple
• Each element of the tuple can be accessed using the index operator. The index can be

negative (starting from the end of the tuple)
• Slices of tuple can be obtained by using [slice_start: slice_end: step]
• Tuples are immutable and therefore the elements of a tuple can be accessed but not

changed

• Tuples can be converted into lists and vice versa
• Assignment to multiple variables (packed inside a tuple) can be done on the same line of

code.
• A function can return multiple values (packed inside a tuple).

CompSci 101 - Principles of Programming 19

Python features used in this lecture
tuple1 = (5, 7, 2, 6, 4, 3, 9)
tuple2 = (6,)
for element in tuple1:

…

number_of_elements = len(tuple1)
min_value = min(tuple1)
max_value = max(tuple1)
total = sum(tuple1)
element_from_end = tuple1[-2]
tuple2 = tuple1[1:5:2]
position = tuple1.index(3)
tuple3 = tuple([8, 4, 9])
list1 = list(tuple1)
(a, b, c) = ("ant", "bee", "cat")
def get_results():

return (56, 23, 91)

CompSci 101 - Principles of Programming 20

