
Some helpful information
about Questions 4, 5 and 6

CompSci 101 Assignment 3
parameter - a list of integers
returns - a list of numbers which includes every third element if it is

an even number starting from the last element in the list going
down to the beginning of the list. The original list should not be
changed.

A3 Q4 - get_every_third_even_element()
2CompSci 101 - Principles of Programming

list1 = [23, 12, 6, 5, 8, 9, 7, 4]
list2 = get_every_third_even_element(list1)
print("1.", list1)
print("2.", list2)
list1 = [22, 12, 6, 5, 11, 9, 7, 4]
list2 = get_every_third_even_element(list1)
print("3.", list1)
print("4.", list2)

1. [23, 12, 6, 5, 8, 9, 7, 4]
2. [4, 8, 12]
3. [22, 12, 6, 5, 11, 9, 7, 4]
4. [4, 12]

How to create a new list, how to add
elements to the new list.

See Slide 2 for A3 Q1

1. Create an empty Python list:

2. Fill the list with the relevant elements using the append()
method. Usually this happens over and over, i.e. inside a loop:

3. Usually the filled Python list is returned as a result of the function:

A3 Q4 - get_every_third_even_element()
3CompSci 101 - Principles of Programming

result_list = []

. . .
result_list.append(an_element)

return result_list

How to go through a list backwards? Using
the index and a loop.

Think of the output to the following skeleton code using different
values for the variables.

If you have the index, the list element can be accessed using square
brackets and the index number.

A3 Q4 - get_every_third_even_element()
4CompSci 101 - Principles of Programming

my_list = . . . #a list of elements
index_last_element = . . . #the index of the last element
for index in range(index_last_element,

down_to_one_before_zero,
step_downwards):

print(index, end = " ")

result_list = […]
index = … #a valid index for the list
element = result_list[index]

How to test if a number is exactly divisible by
a number.

See Slide 3 for A3 Q1

Check if there is zero remainder when the number is divided by
another number, use the % operator

A3 Q4 - get_every_third_even_element()
5CompSci 101 - Principles of Programming

number1 = . . . #some integer
number2 = . . . #some integer
if number1 % number2 == 0:

#Process if number1 is exactly
#divisible by number2

parameter – a list of integers
returns – a new list where the first element is the sum of the first two

elements of the parameter list, the second element is the sum of
the next two elements of the parameter list, and so on.

A3 Q5 - get_sequencial_nums_sums()
6CompSci 101 - Principles of Programming

list1 = [3, 3, 2, 3, 4, 3]
print("1. ", list1)
print("2. ", get_sequencial_nums_sums(list1))
list1 = [1, 2, 3, 4, 5, 6, 7, 8, 9]
print("3. ", list1)
print("4. ", get_sequencial_nums_sums(list1))

1. [3, 3, 2, 3, 4, 3]
2. [6, 5, 7]
3. [1, 2, 3, 4, 5, 6, 7, 8, 9]
4. [3, 7, 11, 15, 9]

How to create a new list, how to add
elements to the new list.

See Slide 2 for A3 Q1
1. Create an empty Python list:

2. Fill the list with the relevant elements using the append()
method. Usually this happens over and over, i.e. inside a loop:

3. Usually the filled Python list is returned as a result of the function:

A3 Q5 - get_sequencial_nums_sums()
7CompSci 101 - Principles of Programming

result_list = []

. . .
result_list.append(an_element)

return result_list

How to go through a list skipping elements.
(Example list: [3, 6, 8, 2, 7, 1, 2])

Think of the output to the following skeleton code using different
values for the variables.

If you have the index, the list element can be accessed using square
brackets and the index number.

A3 Q5 - get_sequencial_nums_sums()
8CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #index of the second element in the list

while the_index_is_a_valid_index_for_the_list:
print(index, end = " ")
#move the index up by 2

result_list = […]
index = … #a valid index for the list
element = result_list[index]

How to see both elements to be added at the
same time.

Think of the output to the following skeleton code using different
values for the variables.

A3 Q5 - get_sequencial_nums_sums()
9CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #index of the second element in the list

while the_index_is_a_valid_index_for_the_list:
#In here you can access the element at index
#you can access the element before it, index minus …

print(index, end = " ")
#move the index by 2

What if the list has an odd number of
elements?

What to do if the length of the list is odd, e.g. for a list such as
[3, 6, 8, 2, 7, 1, 2]

Loop for index 1, then index 3, then index 5 (index 7 is not valid). The
resulting list is

• Element at index 1 plus element at index 0
• Element at index 3 plus element at index 2
• Element at index 5 plus element at index 4

[9, 10, 8]
If the list has an odd number of elements then the last element of the
parameter list needs to be appended to the resulting list.

[9, 10, 8, 2]

A3 Q5 - get_sequencial_nums_sums()
10CompSci 101 - Principles of Programming

parameters – a list of integers
returns – None
The function removes triplets made up of three sequential identical
elements

A3 Q6 - remove_triplets()
11CompSci 101 - Principles of Programming

a_list = [6, 6, 6, 7, 6, 6, 6, 3, 3, 3, 8, 8, 8, 3]
remove_triples(a_list)
print("1.", a_list)
a_list = [6, 6, 6, 7, 6, 6, 6, 6, 6]
remove_triples(a_list)
print("2.", a_list)
a_list = [6, 6, 6, 7, 6, 6, 4, 3, 3, 3, 8, 8, 8, 3]
remove_triples(a_list)
print("3.", a_list)
a_list = [1, 1, 1, 4, 4, 4, 1, 1, 1]
remove_triples(a_list)
print("4.", a_list)

1. [7, 3]
2. [7, 6, 6]
3. [7, 6, 6, 4, 3]
4. []

Need to look at the indices.
In CompSci 101 we use the pop() method to remove an element at
a given index from the list.
The pop() method requires the index number as an argument.

When using the pop() method to remove elements you need to
process the list from the end of the list.

A3 Q6 - remove_triplets() 12CompSci 101 - Principles of Programming

result_list = […]
index = … #a valid index for the list
result_list.pop(index)

my_list = … #a list of elements
index = … #the last index of the list

while the_index_is_a_valid_index:
…

#move the index down the list

Why should you NOT go forwards through the
list when popping elements?

Let's say I wish to remove any element which is exactly divisible by 5 in
the following list. If I look at index 0, then 1, then 2, then 3, then 4,
then 5. I have a problem.

A3 Q6 - remove_triplets()
13CompSci 101 - Principles of Programming

a_list

Starting with index 0 (25): I pop this element and all
the other elements move up.

Now look at index 1 (9).

Now look at index 2 (10): I pop this element and all
the other elements move up.

Now look at index 3 (8).

25

5

9

10

15

0

1

2

3

4

5 8

5

9

10

15

8

9

15

8

5

Problem: because popping the elements means that the elements are
moved up the list, this means that I am not checking all the elements.

Why do you go backwards through the list
when popping elements?

If instead I process the list from the end. If I look at index 5, then 4,
then 3, then 2, then 1, then 0. I do not have a problem.

A3 Q6 - remove_triplets()
14CompSci 101 - Principles of Programming

a_list Starting with index 5 (8).

Now look at index 4 (15): I pop this element and the
last element moves up.

Now look at index 3 (10): I pop this element and
the last element moves up.

Now look at index 2 (9).

25

5

9

10

15

0

1

2

3

4

5 8

25

5

9

10

8

8

9

Now look at index 1 (5): I pop this element and all
the other elements move up.
Now look at index 0 (25): I pop this element and all
the other elements move up.

25

5

9

8

25

9

8

Need a while loop.
This type of problem needs a while loop.
Why?
Don't know which sequence of indices you need to access because
you don't know where the triples are located in the list.

A3 Q6 - remove_triplets() 15CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #the last index of the list

while the_index_is_a_valid_index:
#In here you can access the element at index
#the element before it, at index minus …
#the element two before it at index minus …

#move the index depending on whether the
#elements are equal or not

Inside the loop body access 3 elements of the
list at a time.

A3 Q6 - remove_triplets() 16CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #the last index of the list

while the_index_is_a_valid_index_for_the_list:
#In here you can access the element at index
#the element before it, at index minus …
#the element two before it at index minus …

#move the index down the list

[6, 6, 6, 2, 7, 1, 2]
[6, 6, 6, 2, 7, 1, 2]
[6, 6, 6, 2, 7, 1, 2]

[6, 6, 6, 2, 7, 1, 2]
[6, 6, 6, 2, 7, 1, 2]

How much do you need to change the index
if the three elements are equal. If they are

not equal?

A3 Q6 - remove_triplets() 17CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #the last index of the list

while the_index_is_a_valid_index_for_the_list:
#In here you can access the element at index
#the element before it, at index minus …
#the element two before it at index minus …

#move the index depending on whether the
#elements are equal or not

[4, 6, 6, 6, 3, 2, 2, 2] index 7
[4, 6, 6, 6, 3] index 4 [4, 2] index 0
[4, 6, 6, 6, 3] index 3

What is the condition in the while loop
header? When to stop?

A3 Q6 - remove_triplets() 18CompSci 101 - Principles of Programming

my_list = … #a list of elements
index = … #the last index of the list

while the_index_is_a_valid_index_for_the_list:
#In here you can access the element at index
#the element before it, at index minus …
#the element two before it at index minus …

#move the index depending on whether the
#elements are equal or not

[4, 6, 6, 5, 3, 2, 2, 2, …] #Need to check
[4, 3, …] #Don't want to continue

[4, 2, …] #Don't want to continue

