
VERSION 00000001 COMPSCI101

Page 1 of 19

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2019

Campus: City

COMPUTER SCIENCE

Principles of Programming

(Time Allowed: TWO hours)

Note:
• The use of calculators is NOT permitted.

• You should separate the Section A Question Booklet from the Section B Question/Answer

Booklet. You may keep the Section A Question Booklet. You must hand in the Section B

Question/Answer booklet and the Teleform sheet.

• Compare the exam version number on the Teleform sheet supplied with the version number

above. If they do not match, ask the supervisor for a new sheet.

• Enter your name and Student ID on the Teleform sheet. Your name and Student ID should be

entered left aligned. If your name is longer than the number of boxes provided, truncate it.

• Answer Section A on the Teleform answer sheet provided. For Section A, use a dark pencil to

mark your answers in the answer boxes on the Teleform sheet. Check that the question

number on the sheet corresponds to the question number in this question/answer book. Do not

cross out answers on the Teleform sheet if you change your mind. You must completely erase

one answer before you choose another one. If you spoil your sheet, ask the supervisor for a

replacement. There is one correct answer per question.

• Answer Section B in the space provided in the Section B Question/Answer Booklet.

• Attempt all questions. Write as clearly as possible. The space provided will generally be

sufficient but is not necessarily an indication of the expected length. Extra space is provided at

the end of this exam book.

VERSION 00000001 COMPSCI101

Page 2 of 19

SECTION A

MULTIPLE CHOICE QUESTIONS

For each question, choose the best answer according to the information presented in lectures.

Question 1
[2.5 marks] What is the output of the following code fragment?

value = 3 * 2 ** 3 / (12 - 8) % 13 // 4
print('Result =', value)

(a) Result = 9.0
(b) Result = 0.0
(c) Result = 1.0
(d) Result = 3.0
(e) None of the above.

Question 2
[2.5 marks] What is the output of the following code fragment?

first = 0
second = 1
third = 2
count = 0
print(first,second,third,sep=", ", end=", ")
while count < 3:
 next_val = first + second + third
 print(next_val,", ",sep="", end="")
 first = second
 second = third
 third = next_val
 count = count + 1

(a) 0, 1, 2, 3, 5, 7,
(b) 0, 1, 2, 3, 5, 8,
(c) 0,

1,
2,
3,
6,
11,

(d) 0, 1, 2, 3, 6, 11,
(e) 0, 1, 2, 3, 5, 6,

VERSION 00000001 COMPSCI101

Page 3 of 19

Question 3
[2.5 marks] What is the output of the following code fragment?

text = "the quick brown fox jumps over the lazy dog"
message = text[(text.rfind("qui") + 6):13] + \
 text[(text.find("evo") – 5):-4] + \
 text[-9:-6] + text[(text.find("jum") – 4)]
print(message)

(a) brozy laf
(b) brops over the lazy laf
(c) ops over the lazy lax
(d) ozy lax
(e) None of the above.

Question 4
[2.5 marks] What is the output of the following code fragment?

def show_output(number):
 if number >= 80:
 print("A", end=' ')
 number = number – 10
 elif number <= 60:
 print("B", end=' ')
 number = number + 20
 elif number % 7 == 0:
 print("C", end=' ')
 number = number – 30
 else:
 print("D", end=' ')
 number = number + 40
 print(number)
show_output(63)

(a) B 83
(b) A 53
(c) D 103
(d) C 33
(e) None of the above.

Question 5
[2.5 marks] What statement(s) in a while loop structure would change the value of the loop variable(s)
so that eventually the loop condition would become false?

(a) Initialization
(b) Body
(c) Condition
(d) Increment
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 4 of 19

Question 6
[2.5 marks] What is the output of the following code fragment?

def show_output():
 for number in range(14, 4, -3):
 number += 3
 print(number, end=' ')
show_output()

(a) 14 11 8 5
(b) 8
(c) 5
(d) 4 7 10 14
(e) None of the above.

Question 7
[2.5 marks] What is the output produced when the following code is executed?

 a_list = [2, 0, 3, 1]

 a_list.insert(2, 4)
 a_list.insert(2, 1)

 index = a_list.index(4)
 a_list.insert(0, index)

 a_list.append(a_list[1])

 a_list.pop(a_list[1])

 print(a_list)

(a) [3, 0, 1, 4, 3, 1, 2]
(b) [3, 2, 1, 3, 3, 1, 2]
(c) [3, 2, 1, 4, 3, 1, 2]
(d) [3, 2, 1, 4, 3, 1, 3]
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 5 of 19

Question 8
[2.5 marks] What is the output produced when the following code is executed?

 a_list1 = [1, 4, 5, 2]
 a_list2 = a_list1
 a_list3 = a_list1

 a_list1.sort()
 a_list2.sort()
 a_list3.reverse()

 print("1: ", a_list1)
 print("2: ", a_list2)
 print("3: ", a_list3)

(a) 1: [5, 4, 2, 1]
2: [1, 2, 4, 5]
3: [5, 4, 2, 1]

(b) 1: [1, 2, 4, 5]
2: [1, 2, 4, 5]
3: [2, 5, 4, 1]

(c) 1: [1, 2, 4, 5]
2: [1, 2, 4, 5]
3: [5, 4, 2, 1]

(d) 1: [5, 4, 2, 1]
2: [5, 4, 2, 1]
3: [5, 4, 2, 1]

(e) None of the above.

Question 9
[2.5 marks] What is the output produced when the following code is executed?

 list1 = [3, 4, 7]
 list2 = list1
 list3 = [3, 4]
 list2.pop(2)

 print("1:", list1 == list2, " 2:", list1 == list3,\
 " 3:", list1 is list2, " 4:", list1 is list3)

(a) 1: True 2: False 3: True 4: False
(b) 1: True 2: True 3: True 4: True
(c) 1: False 2: False 3: False 4: False
(d) 1: True 2: True 3: True 4: False
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 6 of 19

Question 10
[2.5 marks] What is the output produced when the following code is executed?

 words = "the,lone,wolf,ate,the,juicy,bone"
 word_list = words.split(",")
 for word in word_list:
 if len(word) == 4:
 index = words.find(word)
 words = words[:index] + words[index + 5:]
 print("**" + words + "**")

(a) **the,,,ate,the,juicy,**
(b) **lone, wolf, juicy, **
(c) **the,ate,the,juicy,**
(d) **['the', 'ate', 'the', 'juicy']**
(e) None of the above.

Question 11
[2.5 marks] Below is a screenshot of the words.txt file. What is the output produced when the
following code is executed?

 file_in = open("words.txt", "r")
 first_read = file_in.read(5)
 second_read = file_in.read(3)
 third_read = file_in.read()
 file_in.close()
 to_print = "**" + third_read[:5] + second_read + "**"
 print(to_print)

(a) **Love Lov**
(b) **state s a **
(c) **states a **
(d) **a stais **
(e) None of the above.

VERSION 00000001 COMPSCI101

Page 7 of 19

Question 12
[2.5 marks] What is the output produced when the following code is executed?

 a_dict = {5: 6, 6: 11, 4: 5, 9: 6, 2: 2}
 count = 0
 for key in a_dict:
 if a_dict[key] in a_dict:
 count = count + 1

 print("Count:", count)

(a) Count: 2
(b) Count: 3
(c) Count: 5
(d) Count: 4
(e) None of the above.

Question 13
[2.5 marks] Given the code below, what is the type of the four variables: object_1, object_2,
object_3, object_4?

object_1 = {"a": 6, "k": 14, "t": 10}

for object_2 in object_1.items():
 object_3 = object_2[0]
 object_4 = object_2[1]
 if object_4 <= 10:
 print(object_2)

(a) object_1: dictionary, object_2: string, object_3: string, object_4:
integer

(b) object_1: dictionary, object_2: integer, object_3: integer, object_4:
string

(c) object_1: dictionary, object_2: tuple, object_3: string, object_4:
integer

(d) object_1: dictionary, object_2: tuple, object_3: string, object_4:
string

(e) None of the above.

VERSION 00000001 COMPSCI101

Page 8 of 19

Question 14
[2.5 marks] Which of the following code segments will produce this output?

 012
 01
 0

(a) number_of_rows = 3
for number_to_do in range(number_of_rows, 0, -1):
 for j in range(number_to_do):
 print(number_to_do, end='')
 print()

(b) number_of_rows = 3
for number_to_do in range(number_of_rows):
 for j in range(number_to_do):
 print(j, end='')
 print()

(c) number_of_rows = 3
for number_to_do in range(number_of_rows):
 for j in range(number_of_rows):
 print(j, end='')
 print()

(d) number_of_rows = 3
for number_to_do in range(number_of_rows, -1, -1):
 for j in range(number_to_do):
 print(j, end='')
 print()

(e) None of the above.

VERSION 00000001 COMPSCI101
Question/Answer Sheet ID ……….…………

Page 9 of 19

THE UNIVERSITY OF AUCKLAND

FIRST SEMESTER, 2019

Campus: City

Computer Science

Principles of Programming

(Time Allowed: TWO hours)

SECTION B Question/Answer Booklet

Answer all questions in this section in the space provided. If you run out of space then please use an
Overflow Sheet and indicate in the allotted space that you have used the Overflow Sheet.

Surname:

First Name(s):

Preferred Name:

Student ID:

Login Name (UPI):

MARKERS ONLY

Q1 – Q14

(/35)

Q15

(/14)

Q16

(/14)

Total

(/100)

Q17

(/13)

Q18

(/13)

Q19:

(/11)

VERSION 00000001 COMPSCI101

Page 10 of 19

Question 15 (14 marks)

a) Complete the replace_characters() function below which takes two parameters: a string
parameter text, and a list of strings char_list. All strings in char_list will have a length of
1 (i.e., they are single character strings). The replace_characters() function replaces all
instances of the strings in char_list in text, with a single "*" character . The function then
returns the modified text string. You can assume that both text and char_list have a length
of at least 1. You can also assume that char_list will not contain the string "*". Note, your
code MUST NOT use the string method replace().

For example, when the following program is executed with the completed function, the output is:

he*** w*r*d

Exam*tim*,*no*pro*l*m

def main():

 print(replace_characters("hello world",["o", "l"]))

 print(replace_characters("Exam time, no problem",["b", "e", " "]))

def replace_characters(text, char_list):

(7 marks)
main()

	

replacement_char = "*"

for char in text:

 if char in char_list:

 char_pos = text.find(char)

 text = text[:char_pos] + replacement_char + \

text[char_pos + 1:]

 return text

VERSION 00000001 COMPSCI101

Page 11 of 19

b) Using the code tracing technique taught in lectures, complete the code trace of the
following program and provide the output.

def first(a):
 b = a - 5
 print("1.", b)
 return a % b

def second(a):
 b = a + 10
 print("2.", b)
 return a + third(b)

def third(a):
 b = a * 3
 print("3.", b)
 return b - a

def main():
 a = 12
 b = first(a)
 print("4.", b)
 b = second(b)
 print("5.", b)

main()

 (7 marks)

VERSION 00000001 COMPSCI101

Page 12 of 19

Question 16 (14 marks)

a) Complete the output produced when the following main() function is executed.

def main():

 list1 = [4, 6, 7, 8, 1]

 the_list = [7, 6, 5, 4, 4, 7, 7, 2, 7, 6]
 count = process_lists(list1, the_list)

 print("count:", count, " the_list:", the_list)

def process_lists(list1, list2):

 count = 0

 for element in list1:

 while element in list2:
 index = list2.index(element)

 list2.pop(index)

 count = count + 1
 return count

 count: 5 the_list: [5, 2]

 (4 marks)

b) In the main() function below, complete the statement which assigns a list of integers to the

variable, numbers1, so that the output when the main() function is executed is:

[72, 5, 36]

def main():

 numbers1 = [7, 0, 3]

 numbers2 = [2, 5, 6, 4, 1, 8]

 print(concatenate_list_elements(numbers1, numbers2))

def concatenate_list_elements(list1, list2):

 minimum = min(len(list1), len(list2))

 list3 = []
 for index in range(minimum):

 element = str(list1[index]) + str(list2[index])

 element = int(element)
 list3.append(element)

 return list3

(4 marks)

VERSION 00000001 COMPSCI101

Page 13 of 19

c) Complete the remove_all_e_words() function which has a list of words (word_list) as a
parameter. The function removes all the words in the parameter list which contain the
lowercase letter 'e'. For example, executing the following main() function using the completed
remove_all_e_words() function gives the output:

a_list: ['chip', 'band']

def main():

 a_list = ["egg", "chip", "peach", "band", "scare", "hem"]

 remove_all_e_words(a_list)

 print("a_list:", a_list)

def remove_all_e_words(word_list):

 for index in range(len(words_list) - 1, -1, -1):
 element = words_list[index]
 if "e" in element:
 words_list.pop(index)

(6 marks)

VERSION 00000001 COMPSCI101

Page 14 of 19

Question 17 (13 marks)

Complete the three functions in the following program which reads information from the input file,
"Shopping.txt", processes the information and writes the resulting information to the output file,
"Docket.txt".

Below is an example of a "Shopping.txt" file (on the left) and the corresponding
"Docket.txt" file (on the right) produced by the completed program:

a) Complete the get_list_of_items_bought() function which is passed one parameter, the

name of a file which contains a list of the shopping items which have been purchased. In the
file, each shopping item is on a separate line. This function returns a list of strings, and each
element of the returned list is a string representing each line read from the file. No element of
the returned list should contain newline characters.

b) Complete the get_total_cost() function which is passed a list of strings as a parameter.

Each element of the parameter list is made up of a description of a shopping item followed by a
" $" and, finally, the price of the item (a floating point number), e.g., "Cat food - Treats $2.75".
This function returns the total of all the item prices in the parameter list rounded to two decimal
places.

c) Complete the write_docket() function which has three parameters: the name of the output
file, a sorted list of strings (each representing one purchased item) and the total price of all the
purchased items. This function writes the following information to the output file (see the
screenshot of the example output file above on the right):

 • a numbered list (starting from the number 1 and followed by ". ") of each item

from the parameter list of strings - one item per line,
 • a blank line,
 • the final line written to the file is the string "Total cost $" followed by the

cost parameter.

def main():

 cart_list = get_list_of_items_bought("Shopping.txt")
 total_cost = get_total_cost(cart_list)
 cart_list.sort()
 write_docket("Docket.txt", cart_list, total_cost)

VERSION 00000001 COMPSCI101

Page 15 of 19

def get_list_of_items_bought(filename):

 file_in = open(filename, "r")
 contents = file_in.read()
 file_in.close()
 contents_list = contents.split("\n")
 return contents_list

def get_total_cost(cart_list):

 total = 0
 for item in cart_list:
 index = item.rfind("$")
 price = float(item[index + 1:])
 total = total + price
 return round(total, 1)

def write_docket(filename, cart_list, cost):

 file_out = open(filename, "w")
 number = 1
 for item in cart_list:
 line = str(number) + ". " + item + "\n"
 file_out.write(line)
 number = number + 1

 file_out.write("\nTotal cost $" + str(cost))
 file_out.close()

main()

 (13 marks)

VERSION 00000001 COMPSCI101

Page 16 of 19

Question 18 (13 marks).

a) Complete the output produced when the following main() function is executed.

def main():
 a_dict = {4: [6, 9, 4, 5], 5: [8, 5, 6], 7: [5, 6, 9], 14: [5]}
 numbers_list = process_dict(a_dict)
 print("numbers_list:", numbers_list)

def process_dict(a_dict):
 numbers = []
 for key in a_dict:
 for element in a_dict[key]:
 if element not in numbers:
 numbers.append(element)

 numbers.sort()
 return numbers

 numbers_list: [4, 5, 6, 8, 9]

 (3 marks)

b) In the main() function below, the a_dict variable is a dictionary which has single letters as
keys and lists of integers as corresponding values. In the main() function, add code which
changes the corresponding value of each key:value pair in the dictionary from a list of integers
to a tuple containing just two elements: the minimum followed by the maximum of the
corresponding list of integers. The output when the completed main() function is executed is:

 {'z': (4, 9), 'b': (2, 5), 'p': (5, 9), 'e': (5, 8)}

def main():

 a_dict = {"z": [6, 9, 4, 5], "e": [8, 5, 6],\

 "p": [5, 6, 9], "b": [5, 2]}

for key, numbers_list in a_dict.items():
 value = (min(numbers_list),
 max(numbers_list))
 a_dict[key] = value

 print(a_dict)

 (4 marks)

VERSION 00000001 COMPSCI101

Page 17 of 19

c) Complete the get_list_of_keys() function which is passed two parameters: a Python
dictionary (a_dict) and an integer (number). The function returns a list of all the keys in the
parameter dictionary which have a corresponding list which contains one or more elements
which are the same as the number parameter. The returned list should be sorted. For example,
executing the following main() function using the completed get_list_of_keys() function
gives the output:

1. ['April', 'November']
2. ['June', 'May', 'November']

def main():
 a_dict = {"May": [6, 9, 4, 5], "June": [8, 9, 6],\
 "November": [11, 6, 9], "April": [5, 6, 11]}
 keys1 = get_list_of_keys(a_dict, 11)
 keys2 = get_list_of_keys(a_dict, 9)
 print("1.", keys1)
 print("2.", keys2)

def get_list_of_keys(a_dict, number):

list_of_keys = []

for key, value in a_dict.items():
 if number in value:
 list_of_keys.append(key)

list_of_keys.sort()
return list_of_keys

(6 marks)
	

VERSION 00000001 COMPSCI101

Page 18 of 19

Question 19 (11 marks)

Parts a) and b) of this question refer to two programs which import and use the tkinter module.
The parts of the main() functions of the two programs which create the windows and create the
Canvas objects of this question, are not shown here.

a) Complete the draw_pattern() function which draws the following two ovals. Note: your

code MUST use the parameters size, top and left to draw the ovals.

1. a filled black oval of width 150 pixels (three times the value of size), height 100 pixels
(twice the value of size), 30 pixels from the left of the window (left) and 20 pixels
from the top of the window (top),

and,

2. a filled white oval of width 50 pixels (size), height 100 pixels (twice the value of
size), 50 pixels to the right of the filled black circle drawn in 1 above.

The screenshot below on the left shows the output window with the two shapes produced and the
diagram on the right shows the dimensions of the two ovals.

def main():

 ...
 draw_pattern(a_canvas, 30, 20, 50)

 root.mainloop()

def draw_pattern(a_canvas, left, top, size):

a_canvas.create_oval(left, top, left + size * 3,

top + size * 2, fill = "black")
a_canvas.create_oval(left + size, top, left + size * 2,

top + size * 2, fill = "white")

 main()
(6 marks)

<- 50 pixels -> <- 50 pixels -> <- 50 pixels ->

VERSION 00000001 COMPSCI101

Page 19 of 19

b) As accurately as possible, in the window below, show what is drawn when the main() function

of the following program is executed. The grid lines have been drawn in the window to help
you. The gap between adjacent gridlines is 10 pixels.

def draw_snake(a_canvas):

 left_hand_side = 20

 y_down = 30
 size = 10

 snake_list = [(20,30),(30,30),(40,30),(40,20),(40,10),(50,10)]

 number_of_elements = len(snake_list)
 for number_to_do in range(number_of_elements):

 x_left = snake_list[number_to_do][0]

 y_down = snake_list[number_to_do][1]
 rect = (x_left, y_down, x_left + size, y_down + size)

 a_canvas.create_rectangle(rect)

 a_canvas.create_oval(rect)

def main():

 ...

 draw_snake(a_canvas)
 root.mainloop()

main()

(5 marks)

